

Innovative Products for Intelligent Applications

<image>

Image: block block

Table of contents

1 TEMPER	ATURE SENSORS – THERMISTORS4
1.1	Thick film chip thermistors5
1.2	Thin film chip thermistors
1.3	F-micro thermistors7
1.4	High accuracy thermistors
1.5	Epoxy coated interchangeable thermistors10
1.6	Film type thermistors11
1.7	Glass encapsulated thermistors12
1.8	Glass encapsulated NTC thermistors
1.9	Waterproof temperature sensors14
1.10	Customized sensors15
1.11	Automotive temperature sensors16
	IC SENSORS
2.1	Hall switch overview
2.1	HAL1002 – programmable hall switch
2.1.2 2.2	Linear distance hall sensor overview
2.2	HAL182x – Programmable or with fixed sensitivity Linear Hall sensor
2.2.2	HAL83x – Ultra-reliable multi-purpose linear hall-sensors
2.2.3	and the second
2.2.4	HAR24xy – Precise and robust programmable initial nan-effect sensor
2.2.5	
2.3	Multi-Axis Sensors – Overview
2.3.1	HAL37xy – Second generation of multi-axis hall sensors
	· · · · · · · · · · · · · · · · · · ·
2.3.3	HAC37xy – Multi-axis Hall sensor with integrated capacitors
2.4	Programming tools for Micronas Hall-effect sensors
2.5	Magnetic angular position sensors
2.5.1 2.5.2	MA8xx Family
	MA3xx and MA7xx family
2.6	Tunneling-magneto-resistive-sensors
2.6.1	CT8xx: Digital TMR latches
2.6.2	
2.6.3	
3 K-BAND	RADAR TRANSCEIVERS
3.1	Radar sensors – Product selection
3.2	Radar sensors – Development tools40
3.3	Radar doppler signal processor RSP141
3.4	K-LD2 Radar Transceiver
3.5	Motion sensor NJR4265R43
3.6	Distance Measurement Sensor NJR4234B44
3.7	Doppler Sensor Module Series NJR426645
4 OPTICAL	SENSORS
4.1	Infrared-LED
4.2	Phototransistors
4.3	Photodiodes
4.4	Photoreflectors
4.5	Ambient Light Sensors
4.6	Pyrosensors
4.7	Digital Pyrosensors
4.8	Summary pyrosensors
4.9	Thermopile-Array-SENSOR – GRID-EYE
	SENSORS
5.1	Vibration sensors vs1 and vs2
5.2	Amorphous silicon solar cells – Amorton
5.3	Amorton – Indoor & outdoor

1. TEMPERATURE SENSORS – THERMISTORS

NTC (Negative Temperature Coefficient) thermistors are resistors which show a decrease in resistance as temperature increases, available as semiconductor type or thick film type. The benefits of NTCs based on semiconducting ceramics are high precision whereas thick film types are more costefficient.

The current flowing through a thermistor may cause some heat which increases the thermistor's temperature above the temperature of the environment. For small currents this effect of self-heating is negligible (unloaded thermistor). We will describe only unloaded NTC thermistors in this application note.

Temperature dependence of the resistance

The resistance of an NTC as a function of temperature can be approximated by the following equation:

 $R(T_1) = R(T_2) \exp(B(1/T_1 - 1/T_2))$ (1)

R(T₁): resistance in unit Ω at temperature T₁ in unit K R(T₂): resistance in unit Ω at temperature T₂ in unit K B: B-value, material-specific constant of the NTC

This exponential law only roughly describes the characteristics of an NTC. This formula is suitable for describing the resistance in a small range around the temperature T_2 (see Fig.1). If a more precise formula is needed, the STEINHART-HART equation provides a more accurate description of the behaviour of the NTC. The parameters used in this equation (STEINHART-HART-coefficients) are dependent on the material of the NTC and are available on request.

B-value

The B value is dependent on the NTC technology and the materials used. It describes the slope of the R/T curve in a ln R-T diagram. The B value can be calculated by using two points of the R-T curve $R(T_1)$ and $R(T_2)$, i. e.:

$$B = T_{1} \cdot T_{2} / (T_{1} - T_{2}) \cdot \ln (R(T_{2})/R(T_{1}))$$

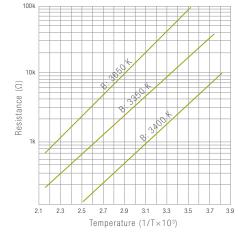
The B-values of this catalogue are calculated based on temperatures 25 °C (T₁) and 85 °C (T₂).

Dissipation factor δ_m

The dissipation factor $\delta_{\rm th}$ is defined as the ratio of the electrical power dissipated in the NTC and the resulting change of the thermistor's temperature. It is expressed in mW/K and is a measure for the load which causes a thermistor in steady state to raise its body temperature by 1 K. $\delta_{\rm th}=dP/dT$

Tolerance

The resistance R_{25}^{-} and the B-value are subject to manufacturing tolerances. Due to those tolerances of the B and R_{25}^{-} value, the resistance of a NTC varies within a certain tolerance area above and below the theoretical curve. The tolerance in resistance of the NTC thermistor is specified for one temperature point (usually 25°C). Using those tolerance values the temperature accuracy of the NTC can be calculated, i. e. the maximum error of temperature measurement at a given temperature.

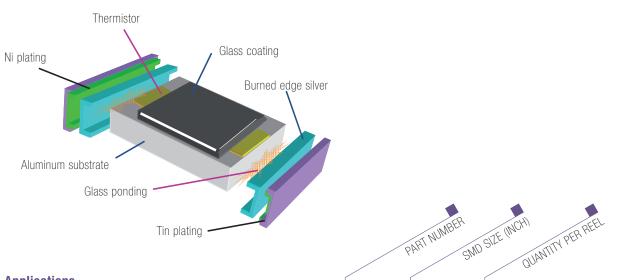

Zero-power measurement

The zero-power resistance is the resistance value measured at a given temperature with the electrical load kept so small that there is no noticeable change in the resistance value if the load is further decreased. If the electrical load is increased the selfheating will distort the measuring result.

Thermal time constant

In most cases the NTC has to measure the temperature of the surrounding air or the temperature of an object, which has to be in thermal contact with the NTC. If the temperature of the air or the object changes, the NTC has to adopt the new temperature which does not happen instantaneously but needs some time. The so called thermal time constant refers to the time it takes for an unloaded thermistor to raise its temperature from 25°C ... 62.9°C when it is immersed in a medium having a temperature of 85°C.

Fig. 1 -Characteristic resistance curve of NTC



e

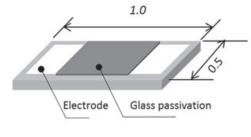
Thick film chip thermistors offer high mechanical strength and reliability due to the thermistor film and glass-coated structure on an aluminium substrate. The thickness is fixed and not related to the resistance value. High solderability and heat resistance are available due to triple structure electrodes.

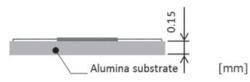
The thermistor element material, based on Mn, Co and Ni, is produced in-house. This core material technology allows us to adjust the thermistor features and R/T curve. The thermistors are TS/IATF 16949 and AECQ-200 certified.

- Heat cost allocators
- Automotive (climate control, air conditioning, etc.)
- Battery management systems
- Blood sugar measurement
- White goods
- Medical

Specification	ons of TFT ser	ies
TFT 6G	0805	5,000 pcs
TFT 3G	0603	5,000 pcs
TFT 16G	0402	10,000 pcs
TFT 20G	0201	15,000 pcs

☑ 1.2 THIN FILM CHIP THERMISTORS

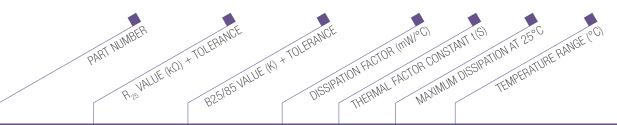



Features

- High heat resistance
- Extremely quick response time
- Miniature size (0401)
- · World-first development of this type of thermistor

Applications

- Medical devices
- Wearable devices
- Laser diodes
- Measurement instruments
- LCDs



FT dimensions Shaded area: electrodes

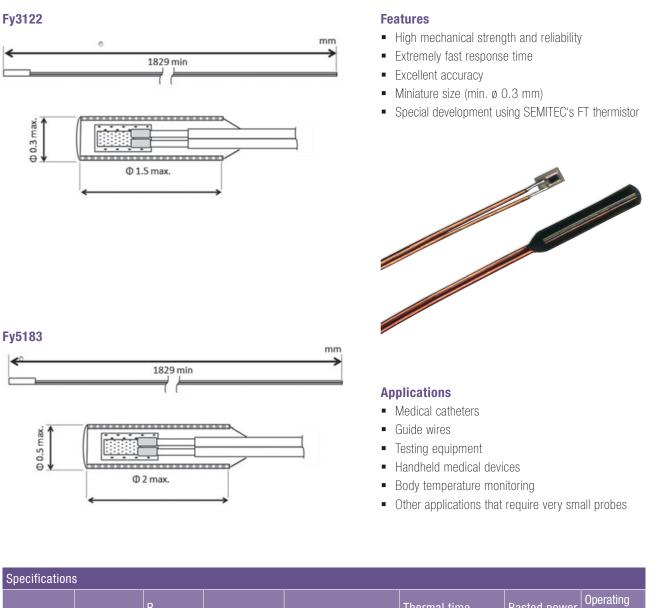
Dimensional drawing

(Unit: mm)

Size	L1	L2	L3	L4	L5
1005	1.00±0.05	0.50±0.05	(0.50)	(0.44)	(0.15)
0603	0.60±0.05	0.30±0.05	(0.15)	(0.25)	(0.15)

Electrical specification and product numbers							
103FT1005A5P	$10 \pm 5\%^{1}$	3370 ± 1%					
103FT1005B5P	$10 \pm 5\%^{1}$	3435 ± 1%					
103FT1005D5P	$10 \pm 5\%^{1}$	$3969 \pm 1\%$	0,3	1	1,5	4	
503FT1005A5P	$50 \pm 5\%^{1}$	3370 ± 1%	0,3	1	1,0	F	
503FT1005B5P	$50 \pm 5\%^{1}$	3435 ± 1%				-	
364FT1005A5P	$360 \pm 5\%^{1}$	3370 ± 1%					
364FT0603A5P	$360 \pm 5\%^{1}$	3370 ± 1%	0,2	0,5	1		

Au/Ni electrode (soldering): -40 to 125 Au electrode (wire bonding): -40 to 250 Pt electrode (conductive resin): -40 to 250 (350)


¹ Other tolerance values and sizes available on demand.

1.3 F-MICRO THERMISTORS

TEMPERATURE SENSORS – THERMISTORS

The F-micro thin film thermistor sensor probe has been developed applying SEMITEC's proprietary thin film thermistor technology, specifically for medical purposes. It is highly suited for catheter applications with its reliability, accuracy and faster response than existing thermistors.

Part number	R ₃₇ ¹	R ₃₇ tolerance	B value ²	Ulissination factor	Thermal time constant	at 25°C	Operating temperature range
223Fµ5183	14.015 KΩ	$\pm 0.5 \%^{4}$	3454 K ± 1%	approx. 0.35 mW/°C	approx. 52 ms ³	1.75 mW	-1070°C
223Fµ5122	14.015 KΩ	± 3 %4	3454 K ± 1%	approx. 0.22 mW/°C	approx. 20 52 ms ³	1.1 mW	-1070°C

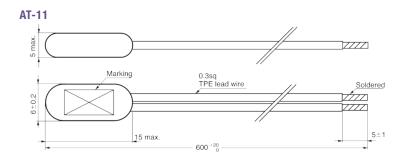
¹ Rated zero-power resistance at 37 °C of the thermistor chip without lead wires

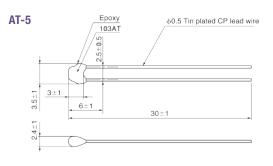
 2 B value calculated from rated zero-power resistance $\,$ at 0 °C and 50 °C without lead wires $\,$

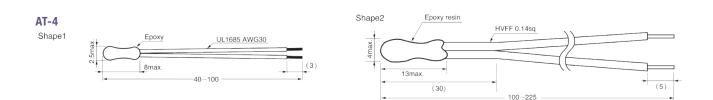
³ Time required to reach 63.2 % of temperature difference. Measured with sensor suspended in still water

⁴ If your application requires other tolerance values please contact sales staff

1.4 HIGH ACCURACY THERMISTORS




HIGH ACCURACY THERMISTORS


SEMITEC[®]

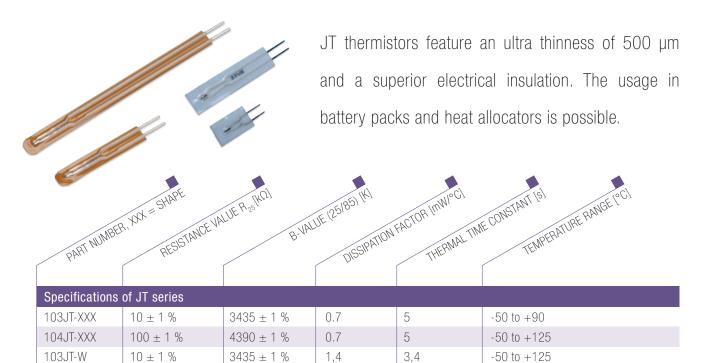
Specifications of AP series								
	202AP-2	2.000	±0.5	3976	±0.5			
	232AP-2	2.252	±0.5	3976	±0.5			
	502AP-2	5.000	±0.5	3976	±0.5			
	103AP-2	10.00	±0.5	3435	±0.5			
	103AP-2-A	10.00	±0.5	3976	±0.5	-60 to +150		
	203AP-2	20.00	±0.5	3976	±0.5			
	503AP-2	50.00	±0.5	4220	±0.5			
	104AP-2	100.00	±0.5	4261	±0.5			
	204AP-2	200.00	±0.5	4470	±0.5			

AP

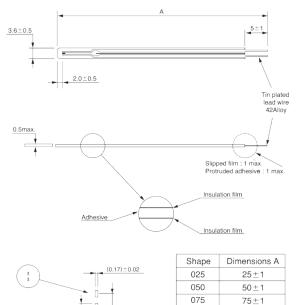
1.5 EPOXY COATED INTERCHANGEABLE THERMISTORS

The TT-3 series NTC thermistors are small size epoxy coated sensing devices. Wide range of RT characteristics, tolerances and wire configurations makes them an ideal choice for temperature sensing, control and compensation.

Very tight resistance tolerance up to +/-0.05°C makes them one of the highest precision NTC thermistors available on the market.


TEWA

16)


- HVAC
- Ambient temperature sensing
- Control and compensation
- Liquid or gas temperature control and monitoring
- Assembled into probes for automotive (air conditioning, cabin climate management, heated seats, other), industrial applications, white goods

Specifications of TT-3:	
PART NUMBER	ТТЗ
RESISTANCE VALUE R_{25} [Ω]	100 1 M
RESISTANCE TOLERANCE [°C]	±0.05,±0.1, ±0.2
B-VALUE (25/85) K	33484261
WIRES/CABLES	AWG28 to AWG36 with/without Teflon insulation
DIAMETER [mm]	1.2 5
TEMPERATURE RANGE (°C)	-40 +150

1.6 FILM TYPE THERMISTORS

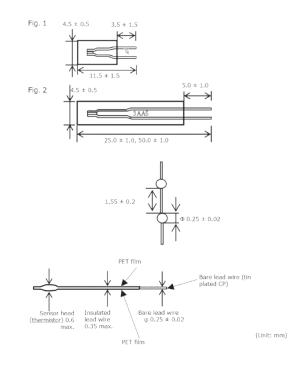
JT thermistor

100

100±1

Dimensions (mm)

 $(0.5) \pm 0.04$


Features

• Tight tolerance for B value and resistance (±1%)

1.8±0.1

- Ultra thin
- Perfect for tight spaces
- Excellent electrical insulation
- World-first development and manufacturer of this type of thermistor

JT-W thermistor

- Battery packs
- IT and mobile devices
- Surface temperature sensors
- Fast response air temperature sensors
- Wearables

SEMITEC[®]

I.7 GLASS ENCAPSULATED THERMISTORS

Semitec's glass enca NT-4 series thermiste high heat resistance and sitivity. Compared with co thermistors, the NT-4 t are smaller, faster in res more reliable which ren suitable for various applie	brs feature I high sen- conventional hermistors ponse, and iders them		p1.25±0.40		2.5±0.4	70	φ0.2 Dumet lead wire
							Dimensional drawing
			• Hi • Sr • Fa	gh heat resis gh sensitivity mall size ast response	I	n use	 Applications Automotive electronics HVAC equipment Water heaters Home appliances 3D printer
PARTN	UNIBER	TEMPERAT	ARE (°CI RESISTA	NCE [0] TO	ERANCE LIE TEMPERATU	RE(°C) B.V	ALUE (K) RANCE OF B. VALUE [%] TEMPERATURE RANGE [°C]
Electrical specification	on and pro	duct numbe	rs				
502NT-4-R025H39G	25	5		25/85	3964		
852NT-4-R050H34G	50	3,485		0/100	3450		
103NT-4-R025H34G	25	10		25/85	3435		
103NT-4-R025H41G	25	10		25/85	4126		
203NT-4-R025H42G	25	20		25/85	4282		
493NT-4-R100H40G	100	3,3		0/100	3970		
503NT-4-R025H42G	25	50	±1%	25/85	4288	± 2%	-50 to +300 (+500)
104NT-4-R025H42G	25	100		25/85	4267		
104NT-4-R025H43G	25	100		25/85	4390		

25/85

25/85

25/85

100/200

4338

4537

4526

4608

204NT-4-R025H43G

234NT-4-R025H42G

504NT-4-R025H45G

105NT-4-R025H46G

25

200

25

25

200

500

1000

1

TEWA

1.8 GLASS ENCAPSULATED NTC THERMISTORS

The TT-2 series NTC thermistors are glass encapsulated sensing devices with standard electrical characteristics. Custom electrical characteristics can be produced in this configuration too.

The glass encapsulation provides excellent stability and durability in an established product style. TT-2 series thermistors are available with dumet wire with or without polyimide tubes for insulation.

- HVAC
- White goods
- Industrial
- Medical

Specifications of TT-2:	
PART NUMBER	TT2
RESISTANCE VALUES R_{25} [Ω]	1 K 1.4 M
RESISTANCE TOLERANCE [%]	±1 ± 20
B-VALUE (25/85) K	2700 4535
WIRES/CABLES	bare dumet wire or with polyimide insulation
DIAMETER [mm]	0.75 3.0
TEMPERATURE RANGE [°C]	-50 +500

TT-O series sensors are IP68 waterproof temperature probes encapsulated with thermoplastic elastomer materials in overmoulding technology. Excellent performance in extreme freeze-thaw conditions resulting from a wide choice of insulation material. The TT-O overmoulded probes are a perfect solution for applications where the best waterproof and moisture protection is required.

- Refrigeration applications (evaporator)
- Air conditioning
- Underfloor heating
- Climate control systems
- Industrial process control
- Automotive

Specifications of TT-0:	
PART NUMBER	ТТО
MEASUREMENT ELEMENT	NTC, PTC, PtRTD, KTY
RESISTANCE TOLERANCE [%]	±0.5 ±5
B-VALUE (25/85) K	3187 4262
WIRES/CABLES	TPE single & double / insulated
DIAMETER [mm]	3.9, 5.0, 6.5
TEMPERATURE RANGE (°C)	-50 +105 (+150)

TEWA

1.10 CUSTOMIZED TEMPERATURE SENSORS

TEWA temperature sensors offer a wide range of standard and customized temperature sensors designed according to individual customer's requirements covering applications in temperature range between -80°C and +800°C. The TT-4 series group contains temperature sensors using NTC/PTC thermistors, PTRTDs and other sensing elements mounted into a wide range of metal/plastic housings.

Features

- Proven stability and reliability
- Low cost
- Variety of metal and plastic housings and tubings designed for specific applications
- Potted with different kinds of resin for reliable sensor protection
- Provides good protection from the environmental against the environmental conditions
- Proven high voltage and dynamic strength

- Available with special cables (2-core cables or stranded with PVC, teflon or kynar insulation, cables with screen & other), connectors and other attachments
- Wide range of resistance and temperature characteristics
- Designed for temperature measurement, temperature control
 and temperature compensation

Specifications of TT-4:	
PART NUMBER	TT4
MEASUREMENT ELEMENT	NTC, PTC, PtRTD, KTY, DS1820
RESISTANCE TOLERANCE [%]	±0.2 ±5
B-VALUE (25/85) K	2700 5100
WIRES/CABLES	PVC, Silicone, FEP, Fiberglass insulation, etc.
DIAMETER [mm]	>1.25
TEMPERATURE RANGE (°C)	-80 800

- Automotive applications
- Consumer products
- Instrumentation industrial ovens
- Electric showers
- HVAC and refrigeration
- Fire detectors
- Battery management systems
- E-mobility

Features

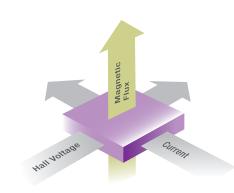
- Extensive use in all global automotive brands
- Dozens of customized assemblies for battery and EV motor applications
- Already high market share for Japanese hybrid car batteries
- Competitive pricing especially for integrated design assemblies (sensor part + resin mold)

- EV batteries
- Electric motors
- Air conditioners
- Capacitors

2. MAGNETIC SENSORS

In 1879 Edwin H. Hall (1855-1938), an American physicist, discovered this effect. The electrons of the current flowing in an electrical conductor are diverted from their normal direct path by an external magnetic field perpendicular to their motion.

Due to the so-called Lorentz force a potential difference (the Hall voltage) is created, proportional to the field strength of the magnetic field and to the current. Silicon is used almost exclusively as a basic material for the technical implementation of magnetic field sensors as the Hall-effect is most pronounced in semiconductors. In modern Hall-effect sensor devices the magnetic field sensitive Hall element is combined with the signal processing on a single silicon chip. Three different types of sensor architecture are available today:

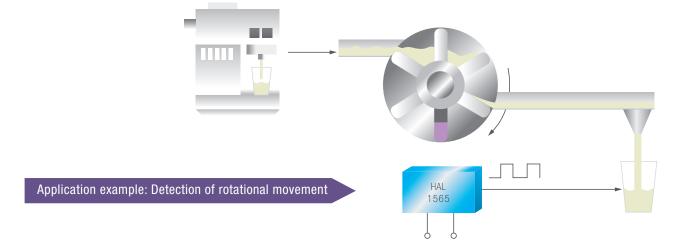

- Digital switches
- Linear sensors
- Direct angle sensors

Linear Hall sensors

Principle of

the Hall effect

Linear Hall sensors differ from the switches as follows: Depending on the magnetic field, the output does not have a discrete switching state, but provides a signal proportional to the magnetic field strength. This output signal can be delivered as an analog output voltage, a pulse-widthmodulated signal (PWM) or even as a modern bus protocol (LIN, SENT).



Hall switches

The simplest application is to use the sensor as a "digital switch". The magnetic field strength is measured and compared with a fixed threshold level predefined or programmable in the sensor. As soon as this value is exceeded (switching point) the switching state at the output of the sensor changes and the output transistor is switched on or off. Two types of switches are available: 3-wire versions with an open-drain output or 2-wire versions with a current-coded output.

Direct angle sensors

New types of Hall-effect sensors do not measure the absolute magnetic field anymore. So-called direct angle sensors capture the field vector by measuring sine and cosine components of the magnetic field. This is possible due to the new 3D-HAL technology from Micronas. Vertical Hall plates measure the magnetic field components in the chip plane as well as the components perpendicular to the chip surface. This kind of sensors provide angular and position information directly via an output signal proportional to the measured angle or position.

2.1 HALL SWITCH OVERVIEW

HALL SWITCHES FOR POSITION DETECTION

Hall switches are commonly used for endposition detection. The sensor recognizes the presence of a magnetic field by signalling an ON/OFF state. Therefore, Hall switches are widely used to replace micro switches, offering superior quality and durability performance.

HAL1002 switch

- Open-drain output (3-wire)
- Different switching points
- T₁ = -40 ... 170°C
- TO92 package

HAL15 switch family

- Open-drain output (3-wire) or current output (2-wire)
- Chopper stabilized
- High-precision thresholds
- Different switching points and behaviour
- T₁ = -40 ... 170°C
- SOT23 or TO92 package

2.1.1 HAL1002

PROGRAMMABLE HALL SWITCH

The major sensor characteristics, the two switching points B_{ON} and B_{OFF} , and the output behavior are programmable for the specific application. The sensor can be programmed to be unipolar or latching, sensitive to the magnetic north pole or sensitive to the south pole, with normal or with an electrically inverted output signal.

Applications

- End position detection
- Kick down
- Bending lights

Features

- Programmable through modulation of supply voltage
 - Switching points programmable from -150 ... 150 mT independent programming of $\rm B_{\rm oN}$ and $\rm B_{\rm orF}$
 - Output behavior (unipolar [inverted] or latching)
 - Temperature coefficient
- Short-circuit protected push-pull output
- Over and under voltage detection
- Over and reverse voltage protection at all pins
- Wire break detection (VDD and GND)
- Supply voltage range: 4.5 ... 8.5 V (target 11 V)
- T range: -40 ... 170°C
- ESD HBM protection up to 8 kV

Specifications of HAL 1002	
PART NUMBER	HAL1002
TYP. B _{on} / TYP. B _{off}	programmable
TYPE	Unipolar, unipolar inverted, latching
CONFIGURATION	3-wire

18

2.1.2 HAL15xy FAMILY

LOW-POWER HALL SWITCH

✤ MICRONAS

Applications

Endposition detection

Brake light switch

Gear shift lever

Window lifter

Clutch pedal position

BLDC motor commutation

containing a temperature-compensated Hall plate with active offset compensation and comperator, available optionally with open-drain or current output.

The HAL15xy family consists of different Hall switches

Features

- ISO 26262 compliant, ASIL A ready device
- Very low current consumptions of typ. 1.6 mA (3-wire)
- Wide supply voltage operation from 2.7 ... 24 V, over voltage protection capability up to 40 V
- Highest HBM ESD performance up to ±8 kV
- Reverse-voltage protection at supply pin
- Operating with static and dynamic magnetic fields up to 12 kHz at lowest output jitter
- T₁-40 ... 170 °C
- SOT23 JEDEC package
- AEC-Q100 qualification

PART NUMB	ER TVP.P	Son TVP. Bo	IFF TYPE	CONFIGURATION
·	[
Specifications HAL1501	0.4 mT	-0.4 mT	bipolar, high sensitivity	
HAL1502	2.5 mT	-2.5 mT	latching, high sensitivity	
HAL1503	5.5 mT	3.7 mT	unipolar, medium sensitivity	
				0 wire
HAL1506	18.9 mT	17.3 mT	unipolar, low sensitivity	3-wire
HAL1507	28.2 mT	23.9 mT	unipolar, low sensitivity	
HAL1508	-5.5 mT	-3.7 mT	unipolar, medium sensitivity	
HAL1509	3.7 mT	5.5 mT	unipolar inverted, medium sensitivity	
HAL1562	12 mT	-12 mT	latching, low sensitivity	
HAL1563	7.6 mT	9.4 mT	unipolar inverted, medium sensitivity	
HAL1564	4.1 mT	6 mT	unipolar inverted, medium sensitivity	2-wire
HAL1565	6 mT	4.1 mT	unipolar, medium sensitivity	
HAL1566	9.4 mT	7.6 mT	unipolar, medium sensitivity	

2.2 LINEAR DISTANCE HALL SENSORS

OVERVIEW

MICRONAS

HAL 8 product family

- T₁ = -40 ... 170°C
- TO92 package
- Programmable (EEPROM)
- Proven-in-use quality
- Temperature stability

HAL 83x

Analog output

– HAC 830

- Integrated caps
- High accuracy
 - Analog output

HAL 24 product family

- T₁ = -40 ... 170°C
- TO92, SOIC8 or TSSOP14 package
- Programmable (EEPROM)
- On-board diagnostic features
- Versatility and high precision

HAL 2420

- 2-point calibration
- Analog output

HAL 2425

- 2-point calibration
- 16 set points linearization
- Analog output

HAR 2425

- Dual-die version
- Analog output

HAL 2455

- 2-point calibration
- 16 set points linearization
- PWM output

HAR 2455

- Dual-die version
- PWM output

Linear Hall sensors for linear movement

Linear sensors are used to obtain a signal proportional to a linear movement or an electric current level being measured. The output signals can be analog or in digital formats. Due to these proven advantages Hall-effect sensors are widely used to replace conventional potentiometers.

HAL 18 product family

- T₁ = -40 ... 170°C
- TO92 or SOT89 packages
- Ratiometric analog output
- Value optimized version (10bit)
- Versatility and high precision

HAL 1820

 Programmable (EEPROM)

– HAL182x

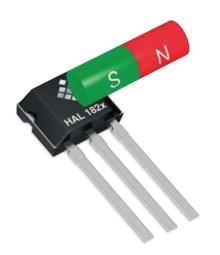
 Pre-configured sensitivity (EEPROM)

HAL 28 product family

- T₁ = -40 ... 170°C
- TO92 package
- High-precision sensors
- Digital signal processing
- Direct 12V battery supply

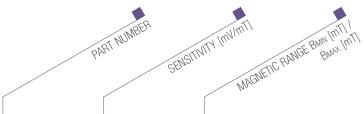
HAL 283x

- SENT interface (SAE J2716 rev.3)
- Up to 16-bit resolution


HAL 2850

- Programmable PWM output
- 12-bit resolution

2.2.1 HAL182x


PROGRAMMABLE OR WITH FIXED SENSITIVITY LINEAR HALL SENSORS 🛛 🔅 MICRONAS

HAL182x consists of an universal magnetic field sensor with a linear analog output based on the Hall effect. The ICs can be used for angle and linear measurements if combined with a rotating or moving magnet.

The major characteristics of the HAL1820 such as magnetic field range, sensitivity, offset (output voltage at zero magnetic field) and the temperature coefficients are programmable in a non-volatile memory. The sensors HAL1821, HAL1822, and HAL1823 have a fixed sensitivity.

Specifications of HAL 182x						
HAL1820	programmable	±20/±160				
HAL1821	50	-50 / +50				
HAL1822	31.25	-80 / +80				
HAL1823	25	-100 / +100				

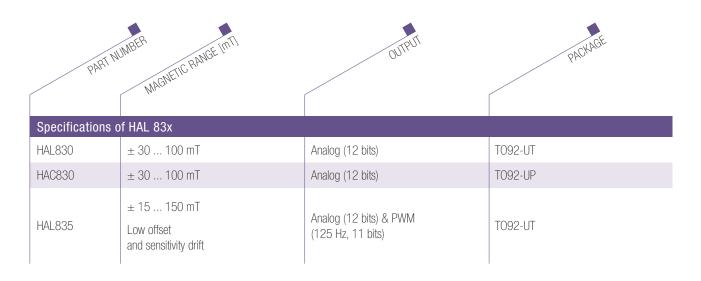
Features

- Magnetic field range: ± 20 ... ± 160 mT
- Under/over-voltage protection
- Junction temperature -40°C ... 170°C
- ESD protection up to 6kV
- AEC-Q100 qualification

- Linear movement e.g. gear position in dual clutch transmission
- Motor control

2.2.2 HAL83x

ULTRA-RELIABLE MULTI-PURPOSE LINEAR HALL-SENSORS


The HAL83x family combines over of 15 years know-how and a proven-in-use quality experience. It can work in harsh environment due to high temperature stability and offers flexibility thanks to the selectable output (analog & PWM) of the HAL835.

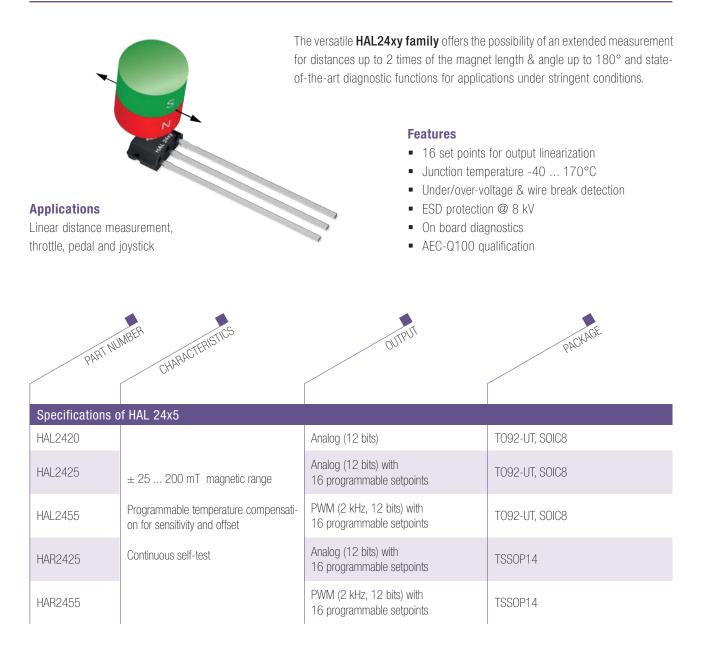
Applications

Linear movement, angle detection, pedal, throttle, turbo charger, transmission and joystick

Features

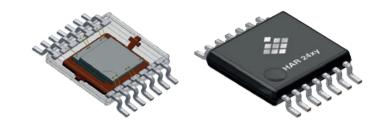
- Junction temperature -40 ... 170°C
- Under/over-voltage & wire break detection
- ESD protection @ 7.5 kV
- Reverse-voltage protection at all pins

☑ 2.2.3 HAC830


NEW CONCEPT OF INTEGRATED CAPACITORS

☑ 2.2.4 HAL24xy –

PRECISE AND ROBUST PROGRAMMABLE LINEAR HALL-EFFECT SENSORS



☑ 2.2.5 HAR24xy

REDUNDANCY IN A VERY THIN PACKAGE

Features

- Same features as HAL24xy
- Redundancy with stacked die configuration
- Package height < 1 mm

OVERVIEW

Two-dimensional measurement with vertical Hall plates

In the area of position detection in automotive or industrial applications, the requirements for sensors are steadily increasing. Their accuracy and reliability in harsh environments has to grow continiously. For applications measuring small distances (up to 6 mm) or small angle ranges (up to 60°), established linear (1D) Hall-effect sensors are showing excellent and reliable performance. For larger ranges a new technology is needed. To this end, Micronas has developed the new Hall-effect sensor family HAL 37xy.

This family represents a new level of performance for Hall-effect sensors enabling a significant simplification in the design of magnetic systems. The sensors are based on Micronas' innovative 3D HAL® technology. A major advantage of this technology is the use of the so-called pixel cell. It consists of a combination of two vertical and one horizontal Hall plate. With this pixel cell you are able to measure the three magnetic field vector components at one spot. Magnetic field lines parallel to the sensor surface are detected by the vertical Hall plates, whereas the component perpendicular to the chip surface is measured by the horizontal Hall plate. The measurement of the relative strength of both components is the key for the excellent angular performance. Even a varying distance between magnet and sensor does not prevent a stable output signal. Temperature effects are mainly suppressed by relative measurement of the two components.

The combination of vertical and horizontal Hall plates enables robust linear position measurements with reduced magnet sizes. Using a magnet with a length of 10 mm, distances of \geq 15 mm can be easily achieved. Overall 40 mm movement can be realized with simple magnetic setups.

Overall, the various family members support different output formats like ratiometric analog PWM and SENT. The devices can be easily adapted to the different applications by providing easy programmability. Key parameters like offset, gain, zero angle, output offset and gain, 33 set points for linearization and clamping levels can be stored in the built-in memory.

Today the whole product family consists of the second generation HAL 37xy featuring further improved angular performance.

HAL 37 product family

- T₁ = -40 ... 170°C
- SOIC8, TO92 package
- Superior accuracy
 Programmable characteristics in a non-volatile memory
- Diagnostic functions
- Measurement of angular and liniar position

HAL 3715

- 12 bit analog module output
- HAL 372x
- 12 bit analog output

HAL 373x

PWM and SENT output

HAR 372x

- 12 bit analog output
- Dual-die version

HAR 373x

- PWM and SENT output
- Dual-die version

- **HAC 3715**12 bit analog
- module output
- Integrated capacitors

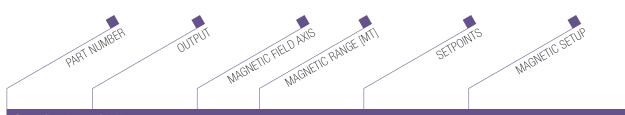
HAC 372x

- 12 bit analog output
- Integrated capacitors

HAC 373x

- PWM and SENT output
- Integrated capacitors

2.3.1 HAL37XY SECOND GENERATION OF MULTI-AXIS HALL SENSORS



Applications

Clutch position, turbo charger actuators, transmission position, chassis position sensors, fuel level and steering angle detection, encoder, linear distance measurement

Features

- High ESD protection according to stringent requirements of the automotive industry
 - ESD protection 8 kV (active pins)
- Wide junction temperature range from -40 ... 170°C
- SOIC8 SMD, TO92-UP for pin leaded package
- No output linearization required for rotary applications
- "open source" programming interface and software
- Unique "Virtual Offset Feature" to
 - -> reduce magnet size & cost
 - -> Accuracy of <0.5% full scale for linear or angular measurements

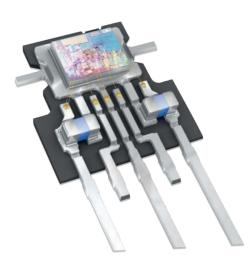


Specifications	of HAL 37xy				
HAL 3725	Analog PWM or SENT SAE-J2716 Rev. 2010	XY	± 20 ±100	33	End of shaft
HAL 3726		YZ			Off-axis or linear position
HAL 3727		XZ			Off-axis or linear position
HAL 3735		XY			End of shaft
HAL 3736		YZ			Off-axis or linear position
HAL 3737		XZ			Off-axis or linear position

Additional features

- Supply voltage range 4.5 ... 5.5 V
- Programming via sensor output TTL-level (0 ... 5 V)
- Memory with redundancy and lock function
- AEC-Q100 qualification
- Various safety features
 - Wire-break & under/over-voltage detection
 - Full signal path and memory supervision
 - Overflow and state machine self-test
 - Magnet lost detection

The HAR37xy Hall-effect sensors offer redundant high-precision angle and linear position measurement in a small SOIC8 package for demanding automotive and industrial applications.

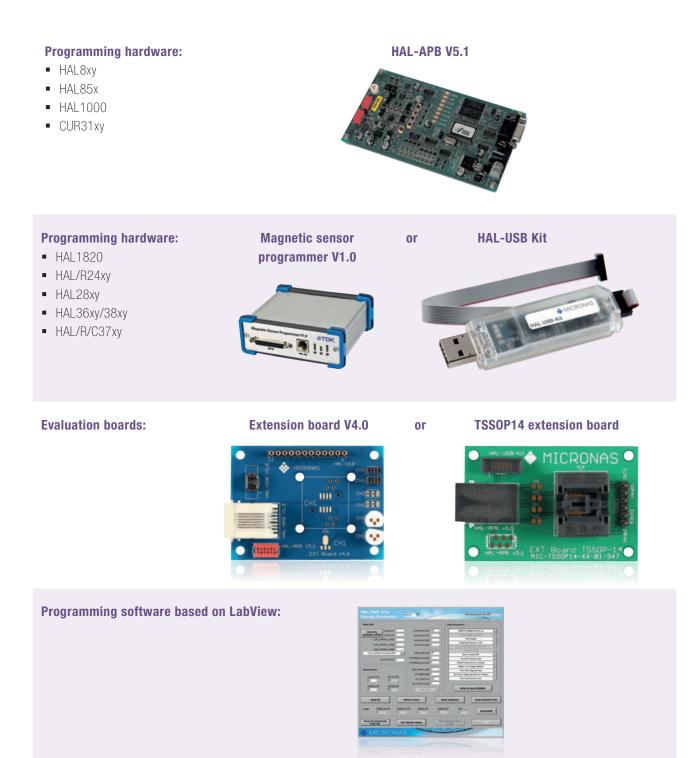

Stacked Die Technology

- Small distance between the two dies sensitive area
- Each die is bonded on a separate side of the package
- Isolated per construction

2.3.3 HAC37xy

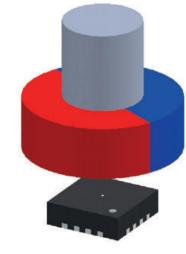
MULTI-AXIS HALL SENSORS WITH INTEGRATED CAPACITORS

The HAR37xy Hall-effect sensors offer redundant high-precision angle and linear position measurement in a small SOIC8 package for demanding automotive and industrial applications.


Stacked Die Technology

- Robust and compact single-mold leaded package TO92UF
- Fault coverage according to ASIL-B
- Analog or digital (PWM / SENT / triggered SENT) output signal
- BCI test class A

2.4 PROGRAMMING TOOLS


FOR MICRONAS HALL-EFFECT SENSORS

These programmer boards are used as a general-purpose programming interface, which is capable of addressing all programmable Micronas Hall-effect sensor families within the Micronas sensor portfolio.

2.5 MAGNETIC ANGULAR POSITION SENSORS

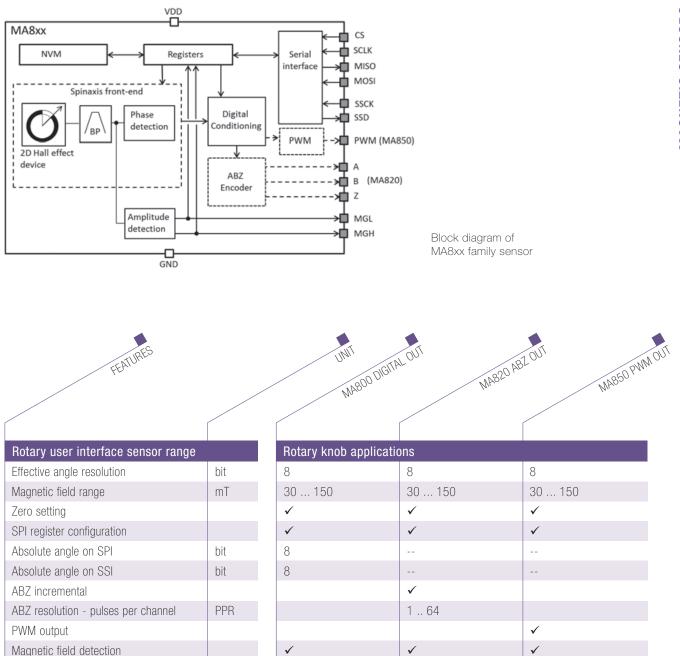
MPS MagAlpha[™] magnetic angle position sensors offer a revolutionary way to measure angles. MagAlpha[™] sensors use the patented "SpinAxis[™]" measurement system in which the phase angle output from a Hall sensor array is compared against time to give the instantaneous angle position in digital format. See Fig 1.

mm

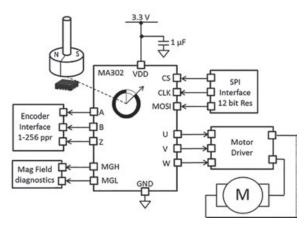
mpc

MagAlpha[™] angle sensors offer the following advantages:

- Instantaneous angle sensing: up to 1 µs sample rate, 3 µs latency at 100 k RPM
- High resolution up to 14 bit
- Support for shaft rotation speeds from 0 to over 100 K RPM
- Wide magnetic field range support from 15 ... 150 mT working range
- End and side shaft magnet positioning
- Low power consumption: 3.3 V, 12 mA
- Small package form factor: 3 x 3 QFN16 package
- Cost effecting solutions


Figure 1: SpinAxis[™] Technique

The "SpinAxis™" technique has allowed MPS to develop a range of angle sensors fitting different types of end application from low cost consumer rotary knobs to high speed motor commutation, position control, and general high resolution angle measurement.



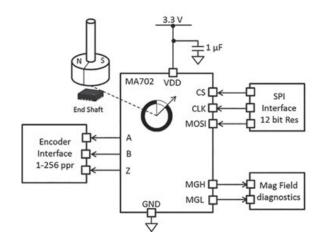
The MagAlpha[™] MA8xx family was designed to replace analog potentiometers or rotary switches in user interface applications. Contactless sensing eliminates the lifetime issues of conventional potentiometers or mechanical switches. The sensor detects the absolute angular position of a permanent magnet, attached to the rotating knob. Typically a simple diametrically magnetized cylinder of 3 ... 8 mm diameter is suitable. Different options are available including digital angle output via SPI/SSI bus, incremental ABZ interface or PWM output. Configuration parameters are stored in a non-volatile memory.

Programmable threshold magnetic field strength detection is built in to enable implementation of a contactless push or pull button. Detection is performed by reading the device registers or the logic state of the two output signals. In this way, a combined rotary knob with "push or pull to select" functionality can be created.

MPS offers a range of MagAlpha[™] angle sensors optimized for <u>brushless motor commutation</u> (MA102), <u>servo motor control</u> (MA3xx family), and <u>general angle measurement applications</u> (MA7xx family). The MagAlpha[™] sensors are able to generate the required signaling for each application, either as direct digital angle output over an SPI or SSI bus, UVW commutation signals or ABZ quadrature incremental encoder outputs.

MA302

MA702: 12 bit fast response angle sensor


The MA702 is the latest generation of MagAlpha[™] technology for general angle measurement. Example applications include position encoders on servo motor drives or industrial actuators. The internal signal conditioning is optimised to provide high resolution whilst maintaining low latency under rapid speed change. Speed ranges from 0 to over 100K RPM are supported.

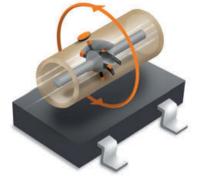
12 bit absolute digital angle resolution has it's output via the SPI bus. A programmable ABZ quadrature encoder interface provides from 1 to 256 pulses per 360° rotation. End and side shaft magnet topologies are supported.

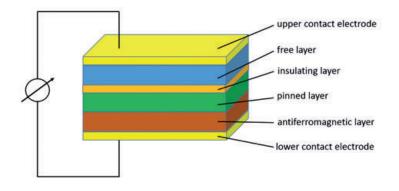
MA302: 12 bit fast response servo motor sensor

The MA302 is one of the latest generation of MagAlpha[™] devices with higher resolution and additional features. It is optimised for high dynamic response and is suited for applications that experience rapid speed change and the need to support high rotation speeds. Examples include high speed brushless motors in servo applications.

The digital conditioning block is optimised to maintain the highest resolution over different operating conditions. Speeds of over 100k RPM are supported on the SPI, ABZ and UVW interfaces. End and side shaft topology is supported.

MA702


2.5.2 MA3xx AND MA7xx FAMILY



FEATURES BY PART		UNIT MA	UNIT NA102 NA302 MA310		1310	MAT02	MATOA	04 MAT10 MA		
FEATURES										
MagAlphaTM High Performance Application Devices										
		Motor commu- tation	Motor con tation + p control		Rotary angle sensors					
Effective angle resolution	bit	12	12	12	12	10	12	14		
Dynamic response		High	High	Medium	High	Ultra-High	Medium	Medium		
Magnetic field range	mT	30 150	30 150	15 150	30 150	30 150	15 150	40 150		
Zero setting		~	\checkmark	~	\checkmark	~	~	~		
Side-shaft compen- sation		\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark		
SPI register configu- ration		\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark		
Absolute angle on SPI	bit	8	12	12	12	10	12	14		
Absolute angle on SSI	bit				12	10	12	14		
ABZ incremental			~	~	\checkmark	\checkmark	~	~		
ABZ resolution	PPR		1 256	1 256	1 256	1 64	1 256	11024		
PWM output					\checkmark	~	~	\checkmark		
PWM resolution					12	10	12	14		
UVW output 1-8 pole pair		\checkmark	\checkmark	\checkmark	~	~	~	\checkmark		
UVW resolution	bit	12	12	12						
Differential UVW		\checkmark								
Magnetic field monitoring		\checkmark	\checkmark	\checkmark	~	~	~	\checkmark		

TMR-sensors from CROCUS are based on a new technology for magnetic field measurement. The main advantages of the TMR-sensors compared to Hall-sensors are the low current consumption and the high sensitivity. The basic unit of TMR-sensors is the so called magnetic logic unit (MLU) which is a stack of several layers of different materials. The resistance of this stack perpendicular to the layers is depending on the orientation of an external magnetic field relative to a fixed axis.

Layer Structure TMR Sensors

The substrate for the stack is an antiferromagnetic layer. Above this layer there is a pinned layer which is a ferromagnetic layer that has a fixed magnetization in a fixed direction. The direction of this magnetization defines the reference direction and it cannot be changed by an external field. Above the pinned layer there is a very thin, insulating layer with a thickness of only a few nanometers. Above this insulating layer another magnetic layer is deposited. The orientation of the magnetization of this free layer can be influenced by an external field. The resistance of the whole stack of layers is depending on the angle between the magnetizations of the free and the fixed layer. It's measureable by applying a voltage at the conducting electrodes at the top and bottom side of the stack. The resistance of the stack varies between 10 k Ω and 60 k Ω . This resistance range of the MLU is much higher compared to other magnetoresistive technologies like AMR (Anisotropic Magnetic Resistance) und GMR (Giant Magneto Resistance). The field necessary to rotate the magnetization of the free layer is quite small. Most of the TMR-sensors operate below 10 mT, some even below 1 mT.

Basically this technology can be used to build magnetic switches or magnetic sensors with analog output. For magnetic switches the current through the MLU is measured and a comparator drives the output stage of the sensor (either open collector or push-pull) high or low, depending on fixed internal threshold values. The most important switch family is the CT83x-series. Latches, unipolar and omnipolar types with different switching fields are available. Most members of this family work internally in a pulsed mode and this leads to a current consumption down to 200 nA for some types, depending on the duty cycle.

However, TMR-sensors can also be used as analog sensors detecting the strength of the magnetic field as well. This allows to measure the distance between a magnet and the sensor. Current sensing is also possible with this technology because the electrical current always produces a magnetic field. Since this magnetic field decreases very strongly with the distance between the conducting wire and the sensor, the TMR-sensors are a good choice for simple current sensors due to their high sensitivity to small magnetic fields. There are special TMR current sensor devices available for closed-loop applications in which the sensor elements as well as the current path for compensating the external field are implemented. In a next step, the new CT400 will have an implemented current path for measuring currents from -10 to 10A or 0 to 50 A.

Typical applications for TMR sensors are low power assemblies like metering or general battery driven devices, where TMR-sensors could be used for detecting rotating wheels or controlling the positions of a flap. Current sensing will be more and more important for battery charging in consumer and automotive applications. **Applications**

• Window and door sensors

Reed switch replacement

Tamper-proofing for utility meters

Motor controllers

Proximity detection

Advantages

High sensitivity

High reliability

Low current consumption

Product description

The CT8xx product family of digital TMR latches based on Crocus' patented MLU[™] technology is ideal for consumer and industrial markets. These latches offer superior sensing performance while having the industry's lowest power consumption that enables then to be used in a variety of applications. The digitial TMR latches are available in 3-lead SOT23 and 4-lead LGA packages.

Features

- High Sensitivity: BOP/BRP = ±0.9 mT/±0.5 mT
- Low Current Consumption As Low As 200 nA
- Digital CMOS Outputs:
 - Push-pull
 - Open Drain
- Supply Voltage: 2.7 V to 3.6 V
- Resistant to Mechanical Stress
- Low Profi le and Small Form Factor Packages
 - RoHS and Green Compliant

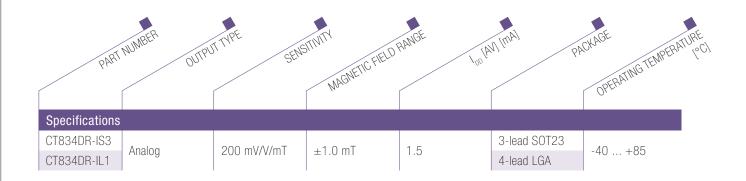
PART	NUMBER	POLARITY	OUTPUT TYPE	BOP [mT]	BRP [mT]	100 [AVG] [nA]	FSAMPLING HZ	PACKAGE OPERATING TEMPERAT			
								OPERATIV			
Specifications											
CT831BV-HS3	Omnipolar	Open Drain	±3.0	±2.0	200	2	3-lead SOT23	-40 +125			
CT831BV-IS3		±3.0	12.0	200	2	3-18au 50123	-40 +85				
CT832BV-HL1	Omninolor	Push-pull	±3.0	±2.0	200	2		-40 +125			
CT832BV-IL1	Omnipolar	Ommpolar	Unnipolai	Uninipulai Fusi	i usii-puli	±3.0	±2.0	200	Ζ	4-lead LGA	-40 +85
CT832BV-HS3	Omninolor	Duch pull	±3.0	±2.0	200	2	3-lead SOT23	-40 +125			
CT832BV-IS3	Omnipolar	Push-pull	±3.0	±2.0	200	2	3-1880 30123	-40 +85			
CT832SK-HS3	Omnipolar	Push-pull	±0.9	±0.5	230	10	3-lead SOT23	-40 +125			

010020100								+0 100
CT832SK-HS3	Omnipolar	Push-pull	±0.9	±0.5	230	10	3-lead SOT23	-40 +125
CT832SK-IS3								-40 +85
CT832SL-HS3	Omnipolar	Duch pull	sh-pull ±0.9	±0.5	1.400 µ	250	3-lead SOT23	-40 +125
CT832SL-IS3		rusii-puii						-40 +85
CT832BL-HS3	Omnipolar	Duch pull	±3.0	±2.0	1 400	250	3-lead SOT23	-40 +125
CT832BL-IS3		Push-pull	±3.0	±2.0	1.400 µ	200	3-18au 30123	-40 +85
CT832DM-HS3	Omnipolar	Push-pull	±1.5	±1.0	1200 µ	2.5 k	3-lead SOT23	-40 +125
CT832DM-IS3		r usii-puii						-40 +85
CT832BH-HL1	Omnipolar	olar Push-pull	±3.0	±2.0	1.600 m	10 k	4-lead LGA	-40 +125
CT832BH-IL1								-40 +85
CT832EK-HS3	Orașinalan	Duch null 7	±7.0		000	10	3-lead SOT23	-40 +125
CT832EK-IS3	Omnipolar	Push-pull	±1.U	±5.0	230	10	3-18au 30123	-40 +85
CT852AN-HS3	Bipolar		+1.0	-1.0	0.600	500		-40 +125
CT852AN-IS3		Push-pull	+1.0	-1.0	2.600 µ	500	3-lead SOT23	-40 +85

MAGNETIC SENSORS

2.6.2 CT834: ANALOG TMR SENSORS

Product description


The CT834 is an analog TMR sensor based on Crocus' patented MLU[™] technology usable for consumer and industrial markets. This sensor offers high sensitivity performance to detect a wide range of magnetic fields and outputs the field level while having the industry's lowest power consumption that enables it to be used in a variety of applications.

The analog TMR sensor CT834 is packaged in a 3-lead SOT23 and 4-lead LGA package formats.

Advantages

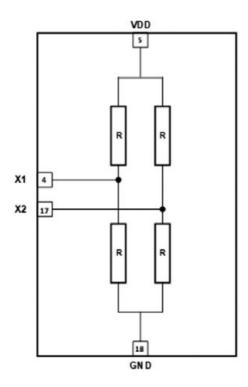
- Low current consumption
- High sensitivity
- High reliability

Features

- High sensitivity: 200 mV/V/mT
- Low current consumption: 1.5 mA
- Analog output
 - Output voltage: 19 ... 81% of VDD
- Supply voltage: 2.7 ... 3.6 V
- Under-voltage lock-out
- Resistant to mechanical stress
- Low profile and small form factor packages
 - RoHS compliant

- Window and door sensors
- Medical devices
- PC laptops
- Fluid level sensors

2.6.3 CT100: CONTACTLESS CURRENT SENSOR

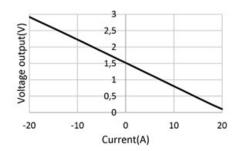


Product Description

The CT100 is a linear contactless current sensor in fullbridge configuration from Crocus Technology developed on its patented MLUTM technology. It supports an operating voltage of 1.0 ... 5.5 V. The CT100 enables high accuracy current measurements for many consumer, enterprise and industrial applications. The CT100 is a non-intrusive current sensor that can be adapted to measure different current ranges.

Features

- High sensitivity
- Differential outputs
- Supply voltage: 1.0 ... 5.5 V
- Mass productiion: Q1/2019



CT100: Block diagram (prelim.)

Applications


- UPS, SMPS and telecom power supplies
- Battery management systems
- Motor control
- White goods
- Power utility meters
- Over-current fault protection
- Induction cooking
- Renewable energy

Volt vs Current

CT100: Linearity performance Output voltage vs. current

Linearity Error

CT100: Linearity error vs. current

written by K. Mezger, RFbeam, St. Gallen, Switzerland

What does K-band mean? K-band stands for the radio frequency range of 18 ... 27 GHz. A portion of this range from 24 ... 24.250 GHz is a so called ISM (Industrial, Science and Medical) radio band. RFbeam sensors use the ISM K-band. The ISM K-band allows operating our sensors in nearly all countries worldwide.

What does "Radar transceiver" mean?

Transceivers are devices containing a transmitter and a receiver. RFbeam radar devices contain always a transmitter and at least one receiver in order to send an electromagnetic wave and to receive the echo of this wave. Radar transceivers are often simply called radar sensors.

Radar transceivers can be operated in different modes (Doppler, FMCW, FSK, ...) depending on the physical quantity that has to be detected, e. g. speed, distance, presence of objects.

What does Doppler sensor mean?

Doppler Radar is used to detect moving objects and evaluate their velocity. A reflective moving object in sight of the sensor generates a low frequency sine wave at the sensor output. The amplitude depends on the distance and the reflectivity of the moving objects. The output frequency is proportional to the object speed: 158 Hz per m/s or 44 Hz per km/h for a radial moving object. Some RFbeam sensors are "stereo" sensors with 2 outputs, called I (In phase) and Q (Quadrature). These sensors allow detecting the moving direction (approaching, receding).

About Doppler radar

A more precise title would be, "CW (Continuous Wave) Doppler Radar", when using RFbeam radar sensors. These sensors do not produce pulses, but send continuously in the K-band (24.125 GHz).

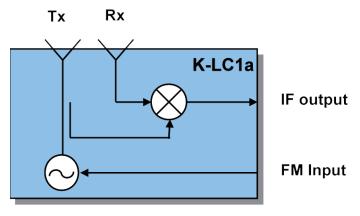


Fig. 1 - Typical radar transceiver

RFbeam radar transceivers (Fig. 1) return a so called IF signal, that is a mix-product of the transmitted (Tx) and the received (Rx) frequency. A moving object generates a slightly higher or lower frequency at the receiver. The IF signal is the absolute value of the difference between transmitted and received frequency. These transceivers operate in the CW (Continuous Wave) mode as opposed to the pulse radars, that measure time of flight. CW radars can operate with very low transmitting power (< 20 dBm resp. 100 mW).

Calculating the Doppler frequency

$$f_{d} = \frac{2 \cdot f_{Tx} \cdot \mathbf{v}}{C_{0}} \cdot \cos \alpha \quad (1)$$

or

$$\mathbf{v} = \frac{\mathbf{c}_0 \cdot f_d}{2 \cdot f_{\mathrm{Tx}} \cdot \cos \alpha}$$
(2)

- $f_{\rm d} = {\rm Doppler \ frequency}$
- f_{Tx} = Transmitting frequency (24 GHz)
- $c_0 = \text{Speed of light (3 \times 10^8 \text{ m/s})}$
- $\nu \ = \text{Object speed in m/s}$
- α = Angle between beam and object moving direction (see Fig. 2)

At a transmitting frequency of $f_{\rm Tx}$ = 24 GHz we get a Doppler frequency for a moving object at the IF output of

$$f_{\rm d} = \mathbf{v} \; \frac{44 \; {\rm Hz}}{{\rm km/h}} \cdot \cos \alpha$$

The angle α reduces the measured speed by a factor of cos α . This angle varies with the distance of the object. To evaluate the correct speed, you need a trigger criteria at a known point. This can be accomplished by measuring the distance with the radar sensor (e.g. using FSK technology) or by measuring the angle using a monopulse radar such as K-MC4.

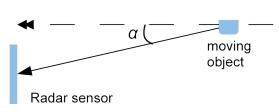


Fig. 2 - Definition of angle a

About FMCW

FMCW stands for Frequency Modulated Continuous Wave. This technique allows the detection of stationary objects. FMCW needs radar sensors with an FM input. This input accepts a voltage that causes a frequency change. There are also sensors with digital frequency control based on digital PLL designs. Modulation depth is normally a very small amount of the carrier frequency. In the K-band most countries allow a maximum frequency range of 250 MHz. Description of many effects such as velocity-range unambiguities go beyond the scope of this paper. Please refer to radar literature for more detailed explanations.

Triangle modulation

The transmitting frequency is modulated by a linear up and down ramp. Figs. 3a+3b show a typical signal $f_{\rm Rx}$ returned by stationary and constantly moving objects. Note, that the difference frequency $f_{\rm b}$ is constant throughout nearly the whole ramp up time. At the output of the radar transceiver we get a low frequency signal $f_{\rm b}$ called beat frequency. This is the result of mixing (=multiplying) transmitted and received frequencies.

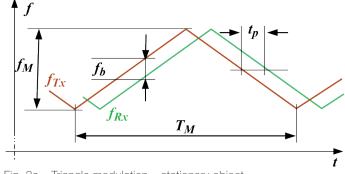


Fig. 3a - Triangle modulation - stationary object

tp

 f_{d}

Returned echo from stationary object

- $f_{\rm M}$ Modulation depth
- T_M Modulation period
- f_{Tx} Transmitted frequency
- $f_{\rm Rx}$ Received frequency
 - Signal propagation time (time of flight)
- $f_{\rm b}$ Beat frequency $f_{\rm Tx}$ $f_{\rm Bx}$
 - Doppler frequency

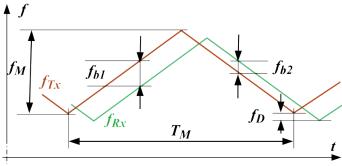


Fig. 3b - Triangle modulation - moving object

___**>**

K-BAND RADAR SENSORS

Returned echo from moving object

The received frequency $f_{\rm Rx}$ is shifted by $f_{\rm d}$. This is the Doppler frequency caused by a receding object moving at a constant speed.

By measuring during up and down ramp, the Doppler frequency f_{d} is the diffence between f_{b1} and f_{b2} .

Distance can be calculated as follows

$$\mathsf{R} = \frac{\mathsf{C}_0}{2} \cdot \frac{f_{\rm b}}{f_{\rm M}} \cdot \frac{\mathsf{T}_{\rm M}}{2}$$

For legend refer to Fig. 3a R = Range, distance to target c_n = Speed of light (3×10⁸ m/s)

Maximum unambiguous range

 $R_{max} = \frac{C_0}{2} \cdot \frac{T_M}{2}$

For legend refer to Fig. 3a R_{max} = Max. unambiguous target distance c_{o} = Speed of light (3×10⁸ m/s)

Distance and resolution

In K-Band (24 GHz), the maximum allowed frequency modulation depth $f_{\rm M}$ is <250 MHz. We also have to take in account tolerances and temperature influences. This limits the usable frequency shift $f_{\rm M}$ to typically 150 MHz.

For measuring $f_{\rm b}$ to evaluate distance we need at least one period of $f_{\rm b}$ during T_M, the range resolution is limited to

$$R_{min} = \frac{c_0}{2 \cdot f_M} = \frac{3^8 \text{ m/s}}{2 \cdot 250 \text{ MHz}} = 0.6 \text{ m}$$

This is a theoretical value, because we have to consider drifts and tolerances in order to stay in the allowed frequency band. Working with the more realistic value of $f_{\rm M} = 150$ MHz, we get a minimum distance and resolution of R = 1 m.

Resolution may be enhanced by using phase conditions, correlation and other sophisticated algorithms.

About FSK mode

FSK stands for Frequency Shift Keying. FSK uses two discrete carrier frequencies f_a and f_b , (Fig. 4) while FMCW uses linear ramps.

For each carrier frequency, separate IF signals must be sampled in order to get 2 buffers for separate FFT processing. Due to the very small step f_a - f_b a moving target will appear nearly with the same Doppler frequency at both carriers, but with a different phase (Fig. 5). Phase shift due to the modulation timing and sampling must also be taken into account.

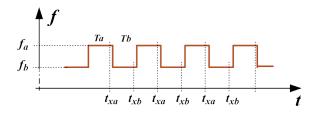


Fig. 4 - FSK modulation scheme

- *f*_a Carrier Frequency a
- *f*_b Carrier Frequency b
- t_{xa} Sampling point for Doppler a
- t_{xb} Sampling point for Doppler b

Switching must be performed at a sampling rate high enough to meeting the Nyquist criteria for the Doppler signal acquisition.

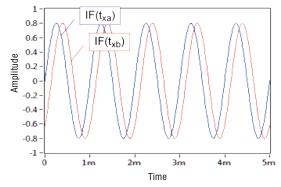
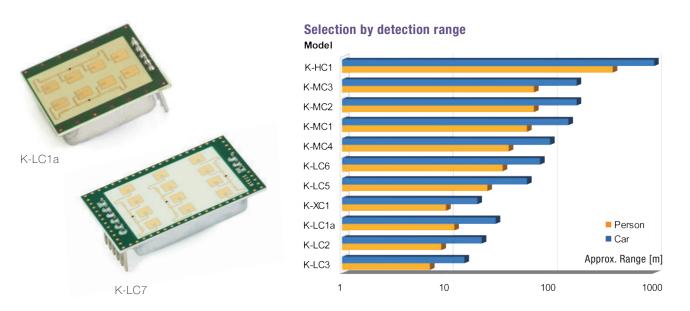
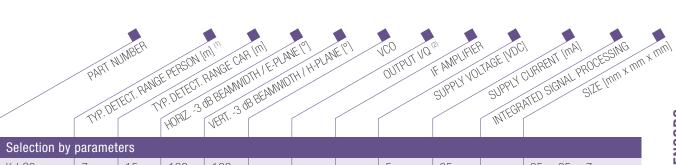


Fig. 5 - Resulting Doppler frequencies

 $\begin{array}{ll} {\rm IF}({\rm t_{xa}}) & {\rm Sensor \ output \ signal \ at \ carrier \ frequency \ f_{\rm a}} \\ {\rm IF}({\rm t_{xb}}) & {\rm Sensor \ output \ signal \ at \ carrier \ frequency \ f_{\rm b}} \\ {\rm Doppler \ signals \ of \ the \ same \ moving \ target \ have \ the same \ frequency, \ but \ are \ phase \ shifted \ by \ \Delta \phi. \end{array}$

For both IF signals, phase must be determined at the spectral peak of the object.


$$R = \frac{c_{0} \cdot \Delta \phi}{4\pi \cdot (f_{a} - f_{b})} \quad \Delta \phi = Phase \text{ shift of } IF(t_{xa}) \text{ and } IF(t_{xb})$$


The smaller the frequency step, the higher the maximum range. To achieve an unambigous distance range of 150 m, a frequency step of 1MHz is required.

Remarks

- FSK can only be used for moving objects
- Multiple objects at different speeds may be detected
- Distance resolution depends mainly on signal processing and is not limited by the carrier bandwidth limitations
- FSK has the advantage of simple modulation and does not suffer from linearity problems
- VCO signal generation is simple, but sampling and phase measurement is challenging

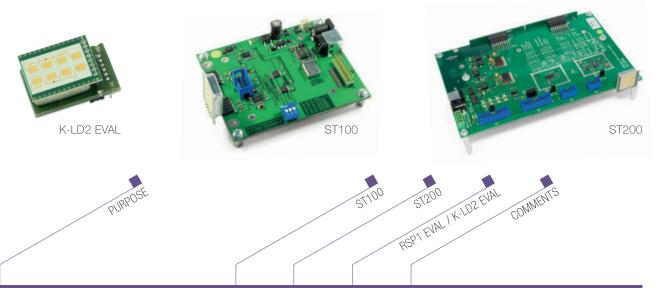
RFbeam

Selection by	paramet	ers									
K-LC3	7	15	138	132				5	35		$25 \times 25 \times 7$
K-LC3_V2	7	15	138	132				3.3	35		$25 \times 25 \times 7$
K-LC4	7	15	138	132	\checkmark	\checkmark		5	35		$25 \times 25 \times 7$
K-XC1_Ant	8	15	25	12	~	\checkmark	\checkmark	12 24	300	\checkmark	89 × 77 × 19
K-LC2	12	30	80	34	\checkmark	\checkmark		5	35		$25 \times 25 \times 7$
K-LC1a	12	30	80	34	✓			5	35		$25 \times 25 \times 7$
K-LC1a_V2	12	30	80	34				5	35		$25 \times 25 \times 7$
K-LC1a_V4	12	30	80	34	\checkmark			3.3	35		$25 \times 25 \times 7$
K-LC1a_V5	12	30	80	34				3.3	35		$25 \times 25 \times 7$
K-LC7	12	30	80	34	✓	$\checkmark\checkmark$		3.3 5	75		$38 \times 25 \times 7$
K-LD2	15	30	80	34		\checkmark		3.3 5	55	\checkmark	$25 \times 25 \times 7$
K-LC5	25	60	80	34	\checkmark	\checkmark		5	50		$25 \times 25 \times 7$
K-LC5_V2	25	60	80	34		\checkmark		5	50		$25 \times 25 \times 7$
K-LC5_V3	25	60	80	34	\checkmark	\checkmark		3.3	50		$26 \times 25 \times 7$
K-LC6	35	80	80	12	\checkmark	\checkmark		5	50		$66 \times 25 \times 7$
K-LC6_V2	35	80	80	12	\checkmark	\checkmark	\checkmark	5	50		$66 \times 25 \times 7$
K-MC4	40	100	30	12	\checkmark	$\checkmark\checkmark$	\checkmark	5	140 / 5		$78 \times 78 \times 7$
K-MC1	60	150	25	12	\checkmark	\checkmark	\checkmark	5	70 / 7		$65 \times 65 \times 7$
K-MC1_LP	60	150	25	12		\checkmark	\checkmark	3.3 5	8		$65 \times 65 \times 7$
K-MC3	70	180	25	7	\checkmark	\checkmark	\checkmark	5	70/7		$105 \times 85 \times 7$
K-MD2	100	200	30	21	\checkmark	$\checkmark \checkmark \checkmark$		12	550	\checkmark	120 × 72 × 17
K-HC1	400	1000	25	12		\checkmark	\checkmark	15 30	220		110 × 77 × 21

K-BAND RADAR SENSORS

⁽¹⁾ - values with simple comparator detector, ⁽²⁾ \checkmark - 2 Channels, \checkmark \checkmark - 4 Channels, \checkmark \checkmark - 6 Channels

Above are indicative values only and cannot be guaranteed. Range depends on many parameters like size of object, direction of movement and data processing method.


RFbeam

ST100 Starter kit, ST200 evaluation system and RSP1/K-LD2 evaluation kit

These kits allow to learn radar basics and evaluating radar technology for your specific application. STxxx kits can save a lot of initial time and money in order to get first radar experience. While ST100 and ST200 allow signal analysis in more detail, RSP1 and K-LD2 Evaluation Kits are oriented on practical implementation of movement sensors.

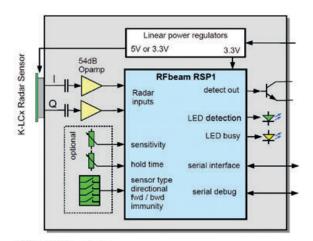
Scope of delivery

- **ST100 Starter kit** is including board, K-LC1a, USB cable, signalViewer software
- ST200 high performance evaluation system is including board, K-LC1, K-LC2, K-MC1, USB cable, signal explorer software
- RSP1 evaluation kit is including board, K-LC1a, K-LC2, K-LC3, K-LC5, K-LC6, USB-cable, RSP_Scope and RSP_Terminal software
- K-LD2 evaluation kit is including board, K-LD2, USB-cable, powerful control panel software & documentation on USB-stick

ST100 Starter kit vs. ST200 evaluation syst	tem vs RSP	1/K-LD2 Ev	aluation ki	t
Learning Doppler basics	\checkmark	\checkmark	\checkmark	
Exploring Doppler sensors	~	~	~	
Developing movement sensors	~	~	~	
Analyzing Doppler frequency spectra	~	~	~	
Working with complex FFT and I/Q sensors	~	~	~	Important for separating multiple objects, suppressing interferences etc.
Recording and playback of Doppler signals	~	~		
Analog output of recorded Doppler signals	~			Very helpful for analyzing real world signals in the laboratory
Exploring FSK ranging		\checkmark		Ranging of moving objects
Exploring FMCW ranging		~		Ranging of moving and stationary objects
Exploring monopulse principle		~		Detect direction angle of moving objects
Suppression of false triggering			~	

3.3 RADAR DOPPLER SIGNAL PROCESSOR RSP1 RFbeam

Radar signal processing chip RSP1

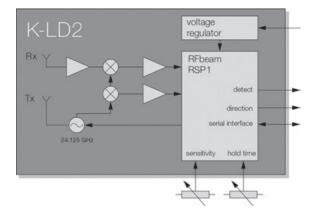

RSP1 is a new microcontroller, which is designed for a smart evaluation of output signals of radar transceivers operating in the Doppler-mode. Speed and presence of moving objects will be detected.

Features

- Universal Doppler radar signal processor
- Complete I/Q radar sensor interface
- Double detection distance compared to traditional solutions
- Object speed and direction detection
- Complex FFT based signal processing
- Efficient adaptive interference suppression
- Inherent object speed detection up to 200 km/h
- Stand-alone or hosted operation
- Serial interfaces to host processor
- Reference design and evaluation board available

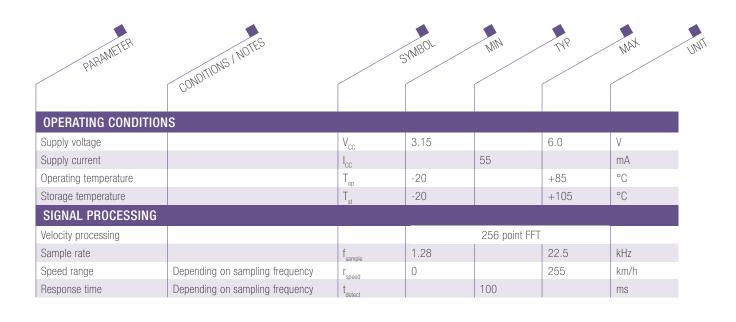
Evaluation board for RSP1

RSP1 Typical Application


Stand-alone application circuitry

Key Data

- 12 bit ADC
- Differential analog inputs for I and Q signals
- Internal programmable gain amplifier
- Sampling rates from 1280 Hz ... 22.5 kHz
- Efficient 256 pt complex FFT
- Logarithmic detection algorithms
- Adaptive noise and interference analysis and canceling algorithms
- Serial command and debug/streaming interfaces
- Highly configurable by serial interface and/or digital and analog inputs
- Application settings can be down- and uploaded from chip
- Sophisticated serial outputs like peak magnitude, frequency and sign, noise level and many more


3.4 K-LD2 RADAR TRANSCEIVER

The K-LD2 is an easy to use 2×4 patch Doppler module with an asymmetrical beam for low cost short distance applications. This transceiver includes a RFbeam RSP1 signal processor and all necessary circuitry. It outputs a detection signal and also the direction of the movement. Important parameters can be adjusted with external potentiometers. Object speed can be measured using the integrated serial connection. There is no need to write own signal processing algorithms or handle small and noisy signals. This module contains everything what is necessary to build a simple but reliable movement detector. An extremely slim construction with a thickness of 6 mm depth gives you maximum flexibility in your equipment design. A powerful starter kit with signal visualization on the PC is available.

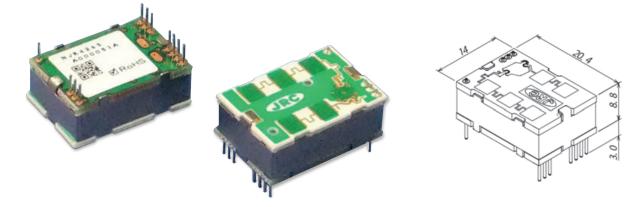
Features

- 24 GHz miniature I/Q transceiver
- Integrated FFT signal processing with digital output
- Low cost design
- Digital outputs for detection and direction
- Sensitivity and hold time can be set using analog inputs
- Additional configuration with serial input possible
- 2 × 4 patch antenna with 80 °/ 34 ° beam aperture
- 25 × 25 mm² surface, thickness < 6.5 mm

Applications

Door opener

Industrial sensors



General movement detection applications

Object speed measurement systems

Indoor and outdoor lighting control applications

Intelligent K-Band Doppler module

NJR4265R is an intelligent motion sensor that is designed for the sensing of short distance low speed moving objects like pedestrians etc. The steady sensing of a moving object is realized by embedded software. The sensor is suitable for the built-in use of the sensing function to various equipments since all functions are integrated in a small package. The NJR4265R can easily be controled from PC/ MCU by UART interface. Furthermore, stand alone operation is also possible.

Features

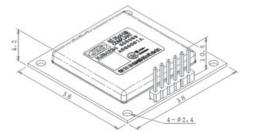
- Motion sensor based on 24 GHz Microwave Doppler effect
- Antenna, RF circuit, IF amp, MCU and voltage regulator are integrated in a small package (14 × 20.4 × 8.8 mm)
- Signal processing software for the steady sensing
- Enhancing signal from movement object and decreasing random noises
- Decreasing mutual interference between sensors
- Identification of moving direction (approaching and leaving)
- Low voltage operation and low power consumption
- In compliance with EC directive (CE Marking) and FCC certification

Applications

- Energy saving equipment (lighting equipment, air conditioner etc.)
- Room access control system equipment
- Human detection sensor for various devices

Sensing performance

- Speed range of target: 0.25 ... 1 m/s
- Max. distance in the front: 10 m
- Detection angle: ±35°


Environmental characteristics

- Operating temp. range: -20°C ... +60°C
- Storage temp. range: -40°C ... +80°C
- Humidity: 0-95% at +30°C

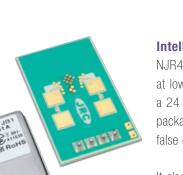
PARTNUMBER	FREQUENCY	REGION
Product line-up		
NJR4265RJ1C1	24.05 24.25 GHz	Japan
NJR4265RF1C1	24.05 24.25 GHz	EU except specific regions
NJR4265RF2C1 (1)	24.15 24.25 GHz	All of EU regions
NJR4265RF3C1	24.075 24.175 GHz	United States

Intelligent K-Band middle distance measurement sensor module for moving objects

NJR4234B is a sensor module that measures the distance of stationary and moving objects such as a pedestrian up to 30 m ahead. It incorporates a 24 GHz band microwave circuit, antenna and signal processing circuit in a low profile package of 38 mm x 38 mm x 4.2 mm. As a sensor capable of distance measurement using microwave, it detects moving objects by innovative proprietary signal processing and contains the function to calculate and output the distance to the objects in indoor and outdoor environments.

Furthermore, it has the unique algorithm to prevent radio interference, and to use multiple sensors in the same location. It can be used as a sensor front end with built-in primary signal processing for distance measurement. Due to the easy connection to other equipment via the UART interface, it can be used in a wide range of applications.

Features


- 24 Ghz microwave distance measurement sensor for moving objects
- Antenna, microwave RF circuit, base-band IF circuit, MCU and also signal processing are integrated in low-profile package (38 mm x 38 mm x 4.2 mm)
- Low-power-consumption
- High sensitivity mobile object detection (patented technology)
- Distance measurement signal processing
- Automatic calibration and gain control
- Radio interference prevention
- UART interface and digital CMOS output

Applications

- Various equipment controlled by moving objects detection and distance measurement
- Security equipment
- Traffic control system
- Industrial drones
- Parking management system

PART NUMBER	CENTER FREQUENCY	REGON	MOUNG OBJEC	STATIONARY
Product Line-up				
NJR4234BVF1C1	24.05 24.25 GHz	Japan [MIC Techn. Conf. ARIB STD-T73]	✓	
NJR4234BVF2C1 (1)	24.15 24.25 GHz	All of EU regions [RED 2014/53/EU]	\checkmark	
NJR4234BVF3C1	24.075 24.175 GHz	United States [FCC Part 15.245]	\checkmark	
NJR4234BWF1C1	24.05 24.25 GHz	Japan [MIC Techn. Conf. ARIB STD-T73]	\checkmark	\checkmark
NJR4234BWF2C1 (1)	24.15 24.25 GHz	All of EU regions [RED 2014/53/EU]	1	\checkmark
NJR4234BWF3C1	24.075 24.175 GHz	United States [FCC Part 15.245]	\checkmark	\checkmark

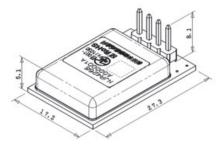
K-BAND RADAR SENSORS

Intelligent low speed K-band motion sensor for short distance

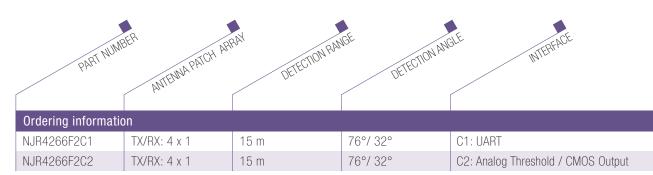
NJR4266 is an intelligent human motion sensor module series that can detect objects moving at low speed like a pedestrian in a short distance range (approx. 7 to 14 m). It incorporates a 24 GHz band microwave circuit, antenna, signal processing circuit and MCU in a low profile package of only 17.2 mm x 27.3 mm x 5.1 mm. Signal processing technology greatly reduces false detection of environmental noise and achieves stable detection results.

It also reduces power consumption by sensitivity setting. The NJR4266 series is available in multiple antenna versions so that the users can select the ideal detection angle best suitable for their specific application. Moreover, the user can select between UART and stand alone version (digital output / analog range setting) as interface type.

Features


- Motion sensor based on 24 Ghz microwave Doppler effect
- Antenna, microwave RF circuit, IF amplifier, MCU and voltage regulator are integrated in low-profile package (17.2 mm x 27.3 mm x 5.1 mm)
- Low power consumption (intermittent mode 1.9 mA min@3.3 V)
- Sleep mode for power reduction
- Decreasing mutual interference between sensors
- Available in 4 antenna versions to select the optimum detection angle
- Selectable between UART interface or digital output / analog sensitivity setting version
- UART interface version offers identification of direction (approaching and leaving) for moving objects

Applications


- Various control equipment by human sensing

JRC

- Lighting sensors
- Safety and Security equipment
- Energy saving management
- Entrance and exit management

PARTNUMBER	CENTER FREQUENCY	REGION
Product Line-up		
NJR4266Jxx	24.05 24.25 GHz	Japan [MIC Techn. Conf. ARIB STD-T73]
NJR42366F2xx	24.15 24.25 GHz	All of EU regions [RED 2014/53/EU (CE Marking)]
NJR4266F3xx	24.075 24.175 GHz	United States [FCC Part 15.245]

Note: As 1x1 type, 4x1 type and 2x2 type are being developed, design values are listed for detection angle and detection distance.

4. OPTICAL SENSORS

4.1 INFRARED-LED

Infrared-LEDs are used as infrared light source for many optosensor applications. In most cases the emitted infrared beam is reflected or interrupted by barrier objects, and the presence of the object is detected by a phototransistor or photodiode. Very often, infrared LEDS are also used for optical data transmission.

Features

Different types of housings

EVERLIGHT

- All devices are available in optical wavelength
 850 nm, 880 nm and 950 nm (most popular one)
- Emission angle 2φ between 10° and 160°
- Radiant intensity (in mW/sr)

	SHAPE	NUMBER	CRIPTION EMISSION ANG	$E^{2} \mathbf{e}^{[1]}$ $= U^{1}, 0 = 00^{10}$ $U^{-} U^{1}, 0 = 00^{10}$	RECTION, NN, S = SIDE RADIANT INTERSTIT TYP. IT	nWIST
			EMPC	n=nb,q=	RADIANTINIL	
Specifications o	f IR-LEDs IR204-A	ø 3 mm	35	u	5.6 @ 20 mA	
	IR333-A	ø 5 mm	20	u	20 @ 20 mA	
	IR908-7C	rectangular housing	60	S	n. a.	
	IR19-21C/TR8	SMD size 0603	150	u	0.7 @ 20 mA	
	IR11-21C/TR8	SMD 1206 with inner lens	100	u	1.6 @ 20 mA	
	IR26-21C/L110/TR8	SMD with lens	20	u, d	3.5 @ 20 mA	
F	IR26-51C/L110/TR8	SMD with lens	20	S	3.5 @ 20 mA	
us the	IR91-21C/TR7	SMD, with lens small angle	25	u, d	5 @ 20 mA	

Many other types of housings and other parameters are available on request.

In many simple optical sensor applications phototransistors are used as a detector for the infrared radiation which is emitted by the IR-LEDs. Phototransistors can be connected directly to a microcontroller and do not need any additional amplifier. This is, besides the low cost of phototransistors, one of the most important advantages compared to photodiodes.

Features

- Sensitive wavelength between 400 nm and 1100 nm without daylight filter
- Sensitive wavelength between 800 nm and 1100 nm with daylight filter
- Same housings available as for IR-LEDs
- Low cost

	SHAPE PART NUMP	ER WITHOUT ALIGHT FLITER AVLIGHT FLITER DA	UNBER WITH NUGHT FILTER NUGHT FILTER	RIPTION	RISE St	FALL TIME NSTIVITY OPECTION, NSTIVITY OPECTION, UP, d = down, S = LIGHT CUPRENT UP, d = down, S = LIGHT CUPRENT
Specifications of	of phototransistors					
5.	PT204-6C	PT204-6B	3 mm	15 µs	u	2 mA (typ.)
Fr	PT333-3C	PT333-3B	5 mm	15 µs	u	3 mA (typ.)
E.	PT908-7C	PT908-7B	rectangular	15 µs	S	0.8 mA (min.)
S. C.	PT15-21C/TR8	PT15-21B/TR8	SMD size 1206	15 µs	U	0.3 mA (typ.)
	PT26-21C/TR8	PT26-21B/TR8	SMD size 1206 with lens	15 µs	u, d	2.6/1 mA (typ.)
	PT26-51C/TR8	PT26-51B/TR8	SMD with lens	15 µs	S	1 mA (typ.)
, est	PT91-21C/ TR7/9/10	PT91-21B/ TR7/9/10	SMD with lens	15 µs	u, d	1.5 mA (typ.)

Other types of housings and other parameters are available on request.

Photodiodes are used to quantitatively measure the amount of light, whereas phototransistors are mainly used to distinguish whether the light level is above or below a certain threshold. The size of the photodiode chips is usually bigger than the size of phototransistor chips, which limits the number of housings available for SMD-photodiodes.

Features standard photodiodes

- Much faster response time than phototransistors
- Housings for down-view and side-view available
- Leaded types available on request

PD15-22C/TR8	PD15-22B/TR8	SMD size 2 mm × 2 mm	10 ns	u	6.5 µA (typ.)
PD70-01C/TR7/10	PD70-01B/TR7/10	SMD size 3 mm × 3 mm	50 ns	u, d	25 µA (typ.)
PD95-21C/TR7/10	PD95-21B/TR7/10	SMD with lens	6 ns	u, d	4 µA (typ.)
PD12-21C/L458/ TR8	PD12-21B/L458/ TR8	SMD with lens $3 \times 2 \times 1$ mm	6 ns	S	1.5 μA (typ.)

High sensitivity

Photodiodes with special features

High sensitivity for blue light

	PRODUCT	FUNCTION - RECEIVER FUNCTION - RECEIVER FUNCTION - RECEIVER	EVING LGHT ANGE IMMI HT RANGE IMMI FUNCTION - PEAK FUNCTION - PEAK WAVE ENG	SEISTIVET HT RANGE (M) FUNCTION - ACT	NE AREA (mn) FUNCT	ON-OTHER PACKAS
Specifications						
NJL6401R-3	PD	350 1000	800	0.7 x 0.7	Sensitivity 0.28A/W@405nm	1.2 x 1.7 x 0.8
NJL6402R-2	PD	350 1000	800	1.0 x 1.0	0.42A/W@660nm 0.47A/W@780nm	1.6 x 2.4 x 0.8
NJL6407R	PD	350 1000	800	1.3 x 2.0	Sensitivity	2.0 x 2.9 x 0.8
NJL6414R	PD	350 1000	900	1.5 x 1.5	from blue light to IR light	2.1 x 2.6 x 0.8
NJL6191R	PD	400 1100	880	2.4 x 2.8	Sensitivity from visible light to IR light	3.5 x 5.0 x 1.5
NJL6193R-3	PD	400 1000	850	0.7 x 0.7	Thin package	1.2 x 1.7 x 0.5
NJL6195R	PD	700 1100	900	2.98 x 2.98	Sensitivity of IR range	3.55 x 3.95 x 0.8

Small package

OPTICAL SENSORS

4.4 PHOTOREFLECTORS

Photoreflectors are very convenient to build optical switches. The emitted radiation of the infrared LED is reflected by an object and the reflected radiation is measured by a phototransistor. The decision, whether the object is present or not, can be made by comparing the photocurrent with a preset threshold value. To measure the distance of the objects is associated with some effort.

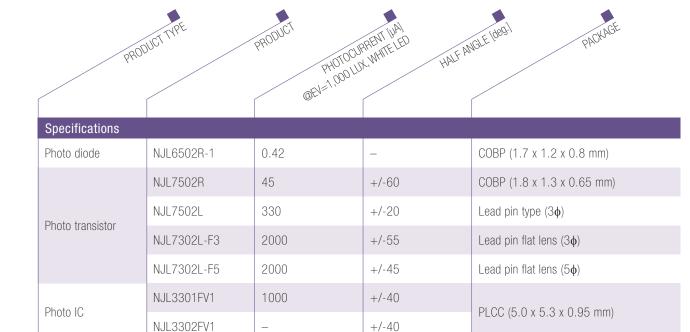
Features

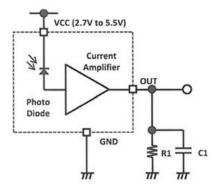
- SMD: very small sizes available
- Leaded types are available on request
- Photoreflector with inner lens: long focal distance of 4 mm
- Easy mechanical implementation

NJL5909RL-4

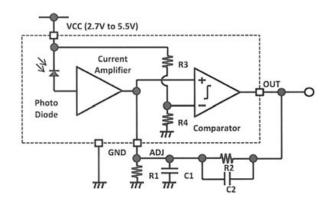
NJL5901R-2

Specifications			
NJL5901AR	2.4 x 1.6 x 0.8	180 450	2.0 max.
NJL5901AR-1	1.6 x 1.3 x 0.6	280 700	5.0 max.
NJL5901R-2	1.4 x 1.0 x 0.6	165 412	5.0 max.
NJL5902R	2.6 x 1.9 x 0.8	90 250	0.2 max.
NJL5902R-1	2.0 x 1.6 x 0.6	160 400	0.5 max.
NJL5902R-2	1.7 x 1.2 x 0.6	62 155	0.5 max.
NJL5905R (Location detection type)	2.3 x 1.8 x 0.6	270 675	0.5 max.
NJL5908AR (Thin package)	1.46 x 1.06 x 0.5	92 230	2.0 max.
NJL5909RL-4 (Long focal: 4 mm)	2.6 x 1.9 x 1.6	35 175	0.2 max.
NJL5911R (Thin package)	1.66 x 1.24 x 0.35	42 105	5.0 max.
 Digital output type 			
NJL5820R (Rotation detection type)	2.6 x 2.5 x 0.8	2 Phase digital output (50).8 LP)

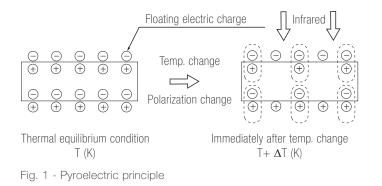

JRC


Standard silicon phototransistors and photodiodes are sensitive for radiation with wavelengths between 400 and 1100 nm. Especially in the infrared range between 800 and 1100nm the sensitivity of silicon devices are quite high compared to the sensitivity in the visible range between 400 and 800 nm. As a consequence such detectors output a relatively high signal under twilight condition, because in this case there is much more infrared radiation present than visible light. This renders the standard silicon photodetectors unusable as (visible) light sensors. Ambient light sensors are optical sensors (photodiodes, phototransistors or photo-ICs) which show a very similar sensitivity spectrum compared to the human eye.

This ensures that the signal of the ambient light sensor correlates with the subjective impression of the human eye.


Features

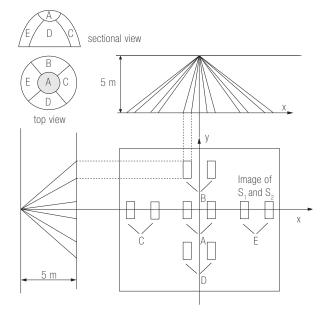
- Faster response time than phototransistors
- SMD: very small sizes available
- Leaded types are available on request
- Photo-IC: with internal amplifier (NJL3301FV1) and comparator available (NJL3302FV1)



NJL3301FV1 with amplifier

NJL3302FV1 threshold setting by external resistors

Pyrosensors were used in the past as detectors for non-contact temperature measurement. The basic principle behind this is the fact, that a black, solid body with temperature T emits electromagnetic radiation with an energy distribution that depends only on the temperature of the body. The wavelength where the energy distribution shows a maximum, is given by λ_{max} (unit μ m)= 2899 / T(unit K). For a human body with a temperature of 37°C the emitted radiation has its maximum at a wavelength of 9.4 μ m.



In the last years it became very popular to use pyrosensors to detect the presence (or more precise the movement) of a human body. These sensors consist of two or four pyroelectric elements in a hermetic housing with a silicon window which is transparent in the range of 5 to $10 \ \mu$ m. The pyroelectric elements show ferroelectric behaviour and are characterized by some permanent electrical polarization on the surface of the elements, see Fig.1. However, the polarization is not detectable

because the surface charges are compensated by some charged ions in the environment of the surface. If infrared radiation hits the pyroelectric elements their temperature increases by a very small amount. Due to the thermal expansion, the crystal structure has to rearrange and thus the polarization on the surface of the elements changes. This change in polarization can be detected by electrodes on the top and bottom side of the pyroelectric elements. The electrical charge necessary to compensate the change in electrical polarization is detected and amplified by an internal FET, see Fig.3. Each temperature change of the elements leads to a short spike in the output signal of the FET which is used to detect the presence of a human body. The changes in polarization are very small and therefore it is necessary that the changes are fast enough in order to be detectable by the FET.

As a consequence, only moving infrared emitting sources can be detected. In order to cancel false signals due to temperature change of the environment there are at least two pyroelectric elements connected in series with antiparallel polarization (Fig. 3).

For movement sensors usually a Fresnel lens (sometimes also a mirror) is used to focus the infrared radiation onto the detecting elements of the pyrosensor. In most cases the Fresnel lenses are divided into several zones and each zone acts as a separate lens. As soon as the infrared radiation source starts to move there are many images of the infrared source in the plane of the sensing elements which pass the pyroelectric element. Each time one of the images passes the elements a spike in output voltage is created. The more zones the lens has, the more

Field of view pattern for a lens with 5 zones A ...E in a distance of 5 m (pyrosensor with two elements S₁ and S₂)

Fig. 2 - Field of view pattern

	YPE	15	NE CHT (mm)	TER [mm]	OUNTING ANGLE
		T	NE JTAL HEIGHT [mm] TOTA	A DAMETER Immi RECONEVOED	MO
				1.	
NICERA lenses					
NCL-10(S) (1)	1	9.5	10.4	wall/ceiling	19°
NCL-10(IL) (1)	3	9.5	10.4	wall	90°
NCL-3(B) (1)	4	8.65	10.4	wall/ceiling	61°
NCL-3(R) (1)	7	8.65	10.4	wall/ceiling	90°
NCL-8 (1)	9	10.0	14.8	ceiling	100°
NCL-9(S) (1)	1	14.45	17.0	wall/ceiling	16°
NCL-9(10) (1)	10	11.5	17.0	wall	120°
NCL-9(26) (1)	26	12.37	17.0	ceiling	100°
NCL-11 (2)	16	12.7	23.0 x 11.0	wall	105°
SAA-Pe.cover lens-4 (2)	16	12.0	24.0 x 15.0	wall	110°
NCL-13 (2)	20	15.75	24.2	wall	100°
NL-11 (2)	17	17.2	24.0	wall/ceiling	107°
SL-7512 (3)	12	16.3	15.7	ceiling	110°
NCL-14 (2)	18	15.0	22.7 x 15.0	wall	120°

(1) = Cap style; (2) = PCB catch style; (3) = PCB catch style, sensor has be to set on a spacer

images are created. This makes it possible to detect even slowly moving objects. To describe the optical properties of a Fresnel lens it is convenient to look at the field of view pattern, see Fig. 2. In this drawing the sensing elements are facing to the plane of the moving object. The rectangular images of the two sensor elements created by the 5 zones of the lens are shown in a plane at a distance of z=5 m from the sensor. Whenever an object is moving from one rectangular area to its neighbouring area, the sensor will detect the moving object. If the object is moving only in the x-direction (e.g. for wall mounted pyrosensor modules) a pyrosensor with two elements is sufficient. If the object is moving in x- and y-direction (e.g. for ceiling mounting of the sensor module) a four element pyrosensor is recommended.

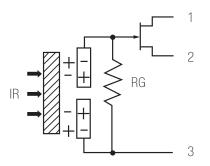
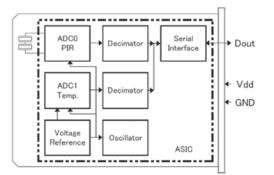


Fig. 3 - Equivalent circuit

Other pyrosensors, pyrosensor modules and lenses are available on request

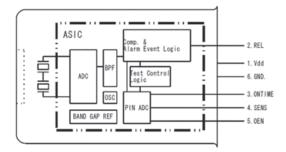

The new generation of pyrosensors contains the pyroelectric elements, amplifier and a microcontroller chip inside the same housing. The signals generated by the pyrosensor elements are converted into a digital signal. These pyrosensors are therefore called digital pyrosensors. Their main advantages are an easy signal evaluation with only a few external devices and a high immunity to electromagnetic interference (EMI).

There are two different types of digital pyrosensors available

PSH3-323-36AA: Communication type

This type communicates with a host controller by a onewire interface (via Dout-pin). The IR signal of the two pyroelectric elements as well as the temperature data of a built-in temperature reference are transferred with a resolution of 14 bit. The PSH3-323-36AA is assembled in a TO5-housing.

PSH3-323-36AA


Applications

- Intrusion alarm
- Automatic light switching
- Automatic backlight control of LCD panels
- Door opener

PSH2-323-66AA: "all-inclusive"- type

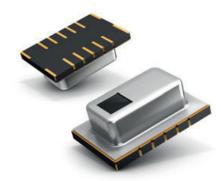
This type includes all the electronics of a movement detector in one housing. The signal of the pyroelectric elements is converted into a digital signal and processed by some internal logic. It may communicate with a host controller, but the device can also be used as "stand-alone" with the ouput signal at pin 2 driving an amplifier with e.g. relay-output. The sensitivity and hold time are fixed by an appropriate voltage divider at the SENS and ONTIME pin. There are also types available with fixed values for the sensitivity and hold time and types with four pyroelectric elements.

PSH2-323-66AA

4.8 SUMMARY PYROSENSORS

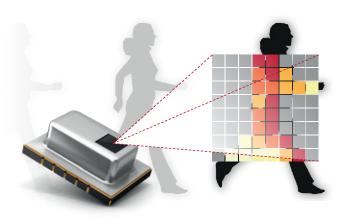
MOL	EL		EMC	FIED SIGNAL OUTPUT VP-P OUTPUT VP-P	VEW DEG.] BALANCE	OUTPUT [90] NOISE OU
	00		AMPL	FED SIGNAL OUTPUT VP-P OUTPUT VP-P FIELD OF	BALANCE	NOISEOL
NICERA Pyrosensor	'S					
RE200G	General, low cost, low noise	Good	3,3	138	15	70
RE200GE	General, low cost, low voltage	Good	3,3	138	15	90
SBG323-671	Standard, low noise, wide window	Good	4.0	134	10	70
SBG323-611	Standard, low voltage, wide window	Good	4.0	134	10	90
SBG342-671	High sensitivity	Good	5,8	134	15	100
SFG323-671	High security, excellent EMC, low noise	Excellent	3,5	134	10	70
SBA02L2-81RC2-P	Low profile, TO-39	Good	3,4	159	15	90
SBG446-671	Quad element for ceiling	Good	6,5	132	15	120
Special types						
SFG323-771	low noise	Good	3,8	134	10	70
SBG323-711	high output voltage, high sensitivity	Good	5,5	134	10	90
Built-In amplifire						
SW-IVC-15G	High speed response, low cost	Fair	0,005	134	n/a	n/a
SW-ULP23-20	Ultra low power consumption	Fair	1,5	134	n/a	160

PSH3-323-36AA	digital communication	Fair	n/a	134	n/a	digital communication
PSH2-323-66AA	digital motion sensor	Good	n/a	134	n/a	switching output
PSH2-446-3	digital motion sensor, four elements	Good	n/a	132	n/a	switching output


OPTICAL SENSORS

GRID-EYE is a thermopile array sensor that features 64 thermopile elements in an 8x8 grid format. Contrary to conventional thermal sensors which only measure the temperature of a certain point-of-contact, Grid-EYE, based on Panasonic's MEMS technology, can measure the temperature of the entire specified area without any contact; in other words, it is a "contactless thermopile array sensor". 64 pixels yield accurate temperature measurement over a viewing angle of 60° provided by a silicon lens. Grid-EYE uses an I2°C communication interface, enabling temperature measurements at speeds of 1 or 10 frames/sec. An interrupt function is also available. With an array of detection elements Grid-EYE can use passive infrared detection to determine temperature differentiation allowing it to detect multiple objects simultaneousely. Grid-EYE is able to measure actual temperature and temperature gradients, providing thermal images and identifying direction of movement. Compared to single thermopile sensors or pyroelectric sensors, Grid-EYE offers immense benefits:

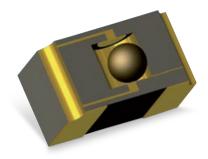
- Digital output (I2C)
- SMD package (reflow compatible)
- 8×8 (64) pixel range
- Frame rate: 10 frames/s or 1 frame/s


Evaluation board

We offer a Grid-EYE evaluation kit that combines its "nanopower" PAN1740 bluetooth smart module and a microcontroller together with the Grid-EYE sensor on one PCB. By combining its new IR sensor technology with Bluetooth technology and using a special software for IR detection of people and objects on one board, Panasonic enables customers to develop rapid prototypes and quickly build their own wireless sensor "Internet of Things" applications.

Features

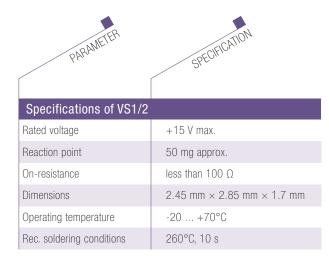
- Dimensions: 11,6 mm×4,3 mm×8,0 mm (L×H×W)
- Operating voltage: 3,3 V or 5,0 V
- Current consumption: Typ.
 4,5 mA (normal mode);
 0,8 mA (stand-by mode),
 0,2 mA (sleep mode)
- Temperature range of measuring object: With amplification factor high gain: 0°C ... 80°C, Low gain: -20°C ... 100°C
- Field of view: 60° (vertical and horizontal)
- Number of thermopiles:
 64 (8 vertical x 8 horizontal)
- External interface: I²C (fast mode)
- Frame rate: 1 or 10 picture/s
- Absolute temperature accuracy: Typ. ±2,5 °C


Applications

Grid-EYE opens the door to a whole world of applications, ranging from energy savings in the lighting industry (commercial and public places as well as residential spaces) to household applications (air conditioners, microwave ovens, etc.), from security systems (automatic doors, elevators, ATMs, kiosks, etc.) to the medical industry (patient detection and positioning), and many more.

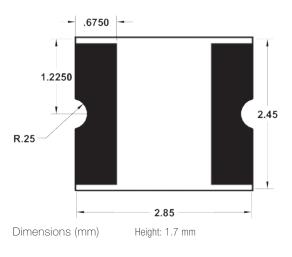
- Security: occupancy detection, people counting, multiple person detection
- Household: cooking stoves, microwave ovens,
- air conditioners, heating systems Medical: patient detection,
- thermal imaging, position detection
- Lighting control: energy savings, detection without movement
- Industrial temperature measurement: industrial process management and control, preserving maintenance, contactless temperature measurement

SENSOLUTE


Energy saving aspects of products (,green products') get more and more important. A common method to achieve this, is to put the system in a low power state as long as the system is not used (sleep mode), and to wake up the system as soon as it is used.

SECTIONAL VIEW VS2 2 CONTACT AREAS

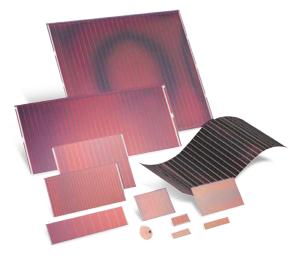
Features


- Small size 2.45 mm \times 2.85 mm \times 1.7 mm
- Mercury-free, RoHS compliant
- Low R_{on}: 100 Ω
- Low noise
- Surface mountable
- Material:
 - housing: reinforced FR4 glass fibre
 - internal switching contact: Cu/Ni/Au
 - ball: steel, gold-plated
- Packaging: 1,000 pcs/reel or 2,000 pcs/reel
- Minimum order quantity: 100 pcs.

Normally a sensor is needed to switch from sleep mode to normal operation. Our VS1 and VS2 are perfectly suited to detect movements of handheld devices and to trigger the wake up of the system.

Endrich provides these surface mountable micro vibration sensors VS as replacement for mercury switches. The sensors detect vibrations by bridging a high ohmic gap in a P.C.B. with a micro ball (\emptyset 0.8 mm). During vibration the resistance between both contact areas changes from some M Ω to less than 100 Ω .

Compared to VS1 type, VS2 has contacts on both sides (top and bottom) of the cylindric tube, whereas VS1 only has a contact at the bottom side. Therefore VS2 has nearly omnidirectional sensitivity characteristics.


Applications

- Motion detection
- System wake up-low power
- Presence detection

5.2 AMORPHOUS SILICON

SOLAR CELLS – AMORTON

Panasonic

Solar cells are classified according to the material employed, i. e. crystal silicon, amorphous silicon, and compound semiconductor solar cells. Unlike crystal silicon, in which atomic arrangements are regular, amorphous silicon features irregular atomic arrangements as shown in the figures below.

Amorton is an integrated amorphous silicon solar cell which has been developed by SANYO. Amorton uses silane (SiH_4) as its source gas and is fabricated using a plasma CVD method.

Three amorphous silicon layers – p-layer, i-layer, and n-layer – are formed consecutively on a glass substrate. This p-i-n junction corresponds to the p/n junction of a crystal silicon solar cell. In the process of this junction formation, a number of cells are connected in series on a substrate at one time. This allows any desired voltage to be obtained for a variety of equipment operation.

Features

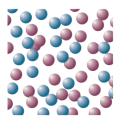
- For indoor and outdoor use
- Glass substrate: low price (basic substrate)
- Stainless steel substrate:
- Thin, light weight, unbreakable, can easily be formed in arbitrary shapes, highly precise dimensions
- Film substrate:

1000

100

1000

Indoor products

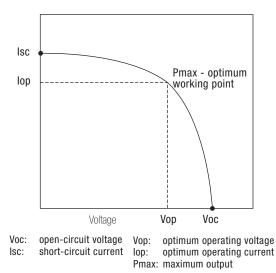

10000

100000 (lux)

Relative Current 005

- Thin, light weight, unbreakable, bendable, can easily be formed in arbitrary shapes
- Solar cells with a variety of voltages can be created
- Solar cells with a variety of shapes can be created

Amorphous atomic arrangement



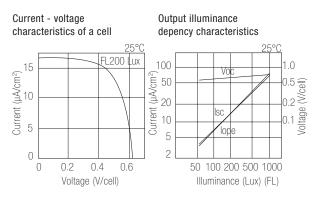
AMORPHOUS

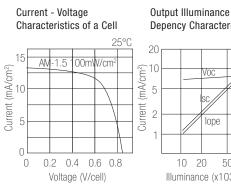
CRYSTAL

- SPECIAL SENSORS

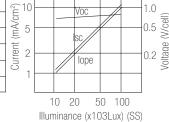
Relationship between illumination level and output

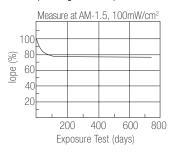
Panasonic


Amorton Products for Clocks (Application example)


Applications

- Wrist watches (solar watches)
- Sensor lights
- Battery chargers
- Clocks
- LED blinkers (curbstone markers)
- Solar driven GSM/GPS modules


Output characteristics


Output characteristics

Depency Characteristics <u>25°C</u>2.0

Lightproof (Leaving Outdoors)

Output characteristics — indoor use Amorton

Indoors, artifical light, such as fluorescent and incandescent light, is used. The illuminance of these light sources ranges from 20 lux to 1,000 lux. Indoors, therefore, Amorton is most suitable for small equipment such as electronic calculators. Please use indoor the Amorton solar cells under 1,000 lux.

Typical cell characteristics				
OPEN-CIRCUIT VOLTAGE	0.63 V/cell			
SHORT-CIRCUIT CURRENT	17.0 µA/cm ²			
MAX. OUTPUT	7.0 µW/cm ²			
LIGHT SOURCE	FL200 lux			

Output characteristics – outdoor use Amorton

Natural light ranges in illuminance from 10,000 lux to 100,000 lux (AM-1.5, 100mW/cm²) or more.

Typical cell characteristics				
OPEN-CIRCUIT VOLTAGE	0.84 V/cell			
SHORT-CIRCUIT CURRENT	13.3 mA/cm ²			
MAX. OUTPUT	7.48 mW/cm2			
LIGHT SOURCE	AM-1.5, 100 mW/cm ²			

WEIGHT [9]

PART	UMBER TYPICAL OPE CHARACTERISTICS (FL-	RATING 200 IUX) TYPICAL OPER TYPICAL OPER CHARACTERISTICS (Ref.FL-	ATING 50 IUX) EXTERNAL DIMENSIONS	(mm) WEIGH
Chapifications of Ar				
-	norton glass substrate		00.0 10.5	1.00
AM-1407	1.5 V / 11.5 μA	1.4 V / 2.85 μA	38.0 × 12.5	1.30
AM-1417	1.5 V / 12.5 μA	1.4 V / 3.10 µA	35.0 × 13.9	1.30
AM-1424	1.5 V / 20.0 µA	1.4 V / 5.00 µA	53.0 × 13.8	2.00
AM-1437	1.5 V / 8.0 µA	1.4 V / 2.00 µA	29.6 × 11.8	1.00
AM-1454	1.5 V / 31.0 μA	1.4 V / 7.75 μA	41.6 × 26.3	3.00
AM-1456	1.5 V / 5.3 μA	1.4 V / 1.30 µA	25.0 × 10.0	0.70
AM-1513	1.8 V / 15.0 μA	1.6 V / 3.75 µA	55.0 × 13.5	2.00
AM-1801	3.0 V / 18.5 μA	2.6 V / 4.60 µA	53.0 × 25.0	3.60
AM-1805	3.0 V / 15.5 μA	2.6 V / 3.85 µA	55.0 × 20.0	3.00
AM-1815	3.0 V / 42.0 μA	2.6 V / 10.50 μA	58.1 × 48.6	7.80
AM-1816	3.0 V / 84.0 μA	2.6 V / 21.00 μA	96.7 × 56.7	15.6

Specifications of Am	orton glass substrate	e – outdoor products		
AM-5302	1.5 V / 105.0 mA	1.5 V / 47.0 mA	31.2 × 117.8	16.3
AM-5412	2.0 V / 39.0 mA	2.0 V / 17.2 mA	50.1 × 33.1	7.30
AM-5413	2.0 V / 16.3 mA	2.0 V / 7.2 mA	33.0 × 23.9*	2.10
AM-5416	2.0 V / 49.9 mA	2.0 V / 22.0 mA	60.1 × 36.7	9.80
AM-5605	3.0 V / 113.0 mA	3.0 V / 51.0 mA	62.3 × 117.8	32.5
AM-5608	3.0 V / 36.0 mA	3.0 V / 16.0 mA	60.1 × 41.3	11.0
AM-5610	3.0 V / 5.0 mA	3.0 V / 2.2 mA	25.0 × 20.0	2.20
AM-5611	3.0 V / 3.2 mA	3.0 V / 1.4 mA	33.4 × 10.0*	0.90
AM-5613	3.0 V / 31.5 mA	3.0 V / 14.0 mA	60.1 × 36.7	9.80
AM-5706	3.5 V / 45.0 mA	3.5 V / 20.0 mA	70.0 × 60.0	15.5
AM-5710	3.5 V / 32.0 mA	3.5 V / 14.0 mA	62.3 × 37.0*	6.30
AM-5812	4.0 V / 19.5 mA	4.0 V / 8.5 mA	59.0 × 28.7	4.60
AM-5902	4.5 V / 60.0 mA	4.5 V / 27.0 mA	150.0 × 37.5	25.0
AM-5904	4.5 V / 10.0 mA	4.5 V / 4.3 mA	40.1 × 33.1	5.90
AM-5907	4.5 V / 44.7 mA	4.5 V / 19.7 mA	75.0 × 55.0	18.3
AM-5909	4.5V / 22.2 mA	4.5 V / 9.8 mA	60.1 × 41.3	11.0
AM-5910	4.5 V / 88.5 mA	4.5 V / 9.8 mA	60.1 × 41.3	11.0
AM-5912	4.5 V / 15.4 mA	4.5 V / 6.8 mA	$42.9 \times 47.2^{*}$	5.60
AM-5913	4.5 V / 30.1 mA	4.5 V / 13.3 mA	60.1 × 55.1	14.7
AM-5914	4.5 V / 23.2 mA	4.5 V / 10.2 mA	50.1 × 55.1*	7.50
AM-5C03	6.0 V / 28.0 mA	6.0V / 12.5 mA	75.0 × 55.0	18.3
AM-5D01	6.5 V / 11.0 mA	6.5 V / 4.8 mA	100.0 × 18.0	8.00
AM-5E02	7.0 V / 23.3 mA	7.0 V / 10.3 mA	75.0 × 55.0	18.3
AM-5S04	15.0 V / 22.0 mA	15.0 V / 9.7 mA	124.5 × 57.0*	19.3
AM-5S05	15.0 V / 15.0 mA	15.0 V / 6.5 mA	124.5 × 39.3*	13.4
AM-5S06	15.0 V / 11.0 mA	15.0 V / 4.9 mA	$124.5 \times 29.5^{*}$	10.0
AM-7A03	5.3 V / 250.0 mA	5.3 V / 113.0mA	150.0 × 165.0	110
AM-7D08	7.0 V / 190.0 mA	7.0 V / 85.0 mA	150.0 × 165.0	110
AM-7E04	7.5 V / 115.0 mA	7.5 V / 50.0 mA	150.0 × 110.0	74.0
AM-7S03	15.0 V / 77.0 mA	15.0 V / 34.5 mA	150.0 × 165.0	110

Glass thickness with * is 1.1 mm, glass thickness without * is 1.8 mm

SPECIAL SENSORS

OFFICES IN EUROPE

Germany Nagold (Headquarters)

Austria

France

Spain

Italy

Hungary

Romania

Switzerland novitronic

ENDRICH Bauelemente Vertriebs GmbH · P.O.Box 1251 · D-72192 Nagold Tel.: +49 (0) 7452 6007-0 · Fax: +49 (0) 7452 6007-70 · endrich@endrich.com · www.endrich.com

NOVITRONIC AG · Thurgauerstrasse 74 · CH-8050 Zürich Tel.: +41 (0)44 306 91 91 · Fax +41 (0)44 306 91 81 · info@novitronic.ch · www.novitronic.ch

www.endrich.com

Ausgabe 2019