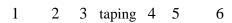
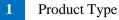


Wire Wound Chip Inductors

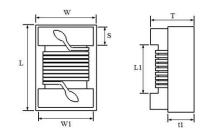
SWI0805FT Series

INTRODUCTION


The SWI series are wire wound chip inductors widely used in the communication applications such as cellular phones, cable modem, ADSL, repeaters, Bluetooth, and other electronic devices. The wire wound inductors advance in higher self resonate frequency, better Q factor, and much more stable performance.


FEATURES

- > Operating temperature-40 to $+85^{\circ}$ C for ferrite series.
- Excellent solderability and resistance to soldering heat.
- Suitable for reflow soldering.
- High reliability and easy surface mount assembly.
- > Wide range of inductance values are available for flexible needs.


PART NUMBER

SWI 0805 F T 1R0 J - $\Box\Box$

Chip Dimension

Size	Length (L)	Width (W)	Thickness (T)	Terminal (S)	L1	W1	t1
(inch) mm	(inch) mm	(inch) mm	(inch) mm	(inch) mm	(Ref.) mm	(Ref.) mm	(Ref.) mm
						11011	11111
SWI 0805 2012	(0.080 ± 0.008) 2.00 ± 0.20	(0.050 ± 0.008) 1.25 ± 0.20	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(0.016 ± 0.004) 0.40 ± 0.10	1.20	*0.95~1.2	0.60

3 Material Type F : Ferrite

4 Inductance Value R47 = 0.47uH 4R7 = 4.7uH 100 = 10uH

- 5 Tolerance $J = \pm 5\%$ $K = \pm 10\%$
 - Internal Code

6

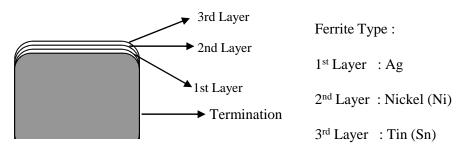
This specification applies to fixed inductors of the following types used in electronic equipment :

*Ferrite Type : For higher inductance at lower frequency circuit requirement.

2 Construction

*Configuration

& Dimension : Please refer to the attached figures and tables.


*Terminals : Consist of Ag alloy followed by Nickel, then Sn platting for easier soldering.

3 Operating Temperature Range

Operating Temperature Range is the scope of ambient temperature at which the inductor can be operated continuously at rated current.

*Temp. Range : Ferrite material : $-40^{\circ}C \sim +85^{\circ}C$

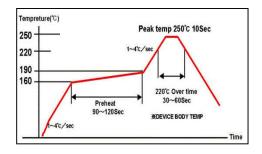
4 Ingredient of terminals electrode

Characteristics

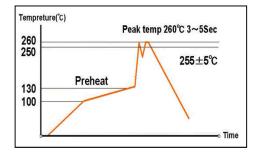
5

Standard Atmospheric Conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

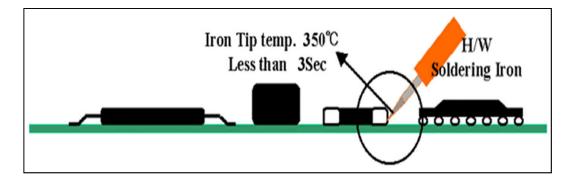

Ambient Temperature $: 25^{\circ}C \pm 2^{\circ}C$ Relative Humidity: 60% to 70%Air Pressure: 86Kpa to 106Kpa

Temperature Profile


Reflow Temperature Profile

(Temperature of the mounted parts surface on the printed circuit board)

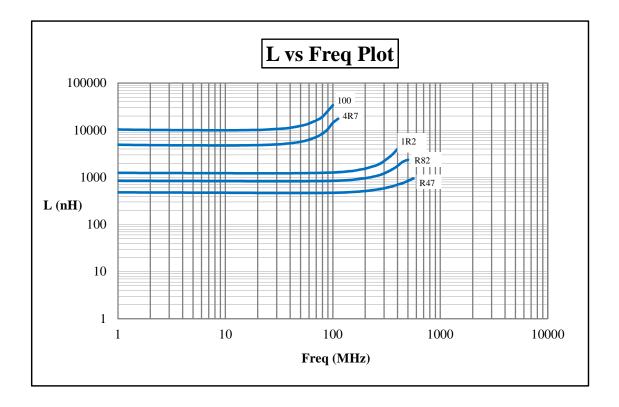
Recommended Peak Temperature : 250°C Max 250°C up /within 10secs Max. Reflow temperature : 260°C Gradient of temperature rise : av 1-4°C/sec Preheat: 160-190°C/within 90-120secs 220°C up /within 30-60secs Composition of solder Sn-3Ag-0.5Cu

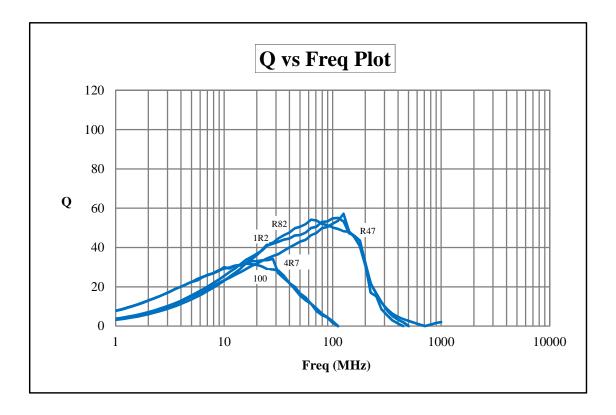


Solder bathtub temperature : 260°C max within 5secs. Preheating temperature : 100~130°C deposit solder temperature. Composition of solder Sn-3Ag-0.5Cu

3

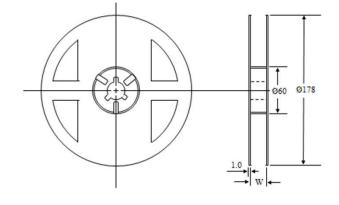
Soldering iron tip temperature : 350°C max / within 3 seconds.




AOBA Technology (M) Sdn. Bhd.

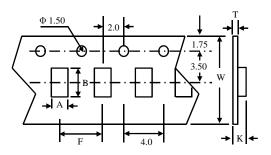
Part No.	Inductance ¹ (uH)	Tolerance	Q ² Min	S.R.F. ³ Min (MHz)	RDC ⁴ Max (Ω)	IDC ⁵ Max (mA)	Marking
SWI0805FT R47	0.47 @ 25.2MHz	K, J	45 @ 100MHz	375	0.95	500	R47
SWI0805FT R56	0.56 @ 25.2MHz	K, J	45 @ 100MHz	340	1.10	450	R56
SWI0805FT R68	0.68 @ 25.2MHz	K, J	35 @ 100MHz	188	1.20	400	R68
SWI0805FT R82	0.82 @ 25.2MHz	K, J	35 @ 100MHz	215	1.50	300	R82
SWI0805FT 1R0	1.0 @ 25.2MHz	K, J	35 @ 50MHz	200	2.13	180	1R0
SWI0805FT 1R2	1.2 @ 7.96MHz	К, Ј	15 @ 7.96MHz	200	2.60	150	1R2
SWI0805FT 1R5	1.5 @ 7.96MHz	К, Ј	15 @ 7.96MHz	200	2.90	130	1R5
SWI0805FT 1R8	1.8 @ 7.96MHz	К, Ј	15 @ 7.96MHz	120	3.00	120	1R8
SWI0805FT 2R2	2.2 @ 7.96MHz	K, J	15 @ 7.96MHz	110	3.10	110	2R2
SWI0805FT 2R7	2.7 @ 7.96MHz	K, J	15 @ 7.96MHz	100	3.50	100	2R7
SWI0805FT 3R3	3.3 @ 7.96MHz	K, J	15 @ 7.96MHz	70	2.30	210	3R3
SWI0805FT 3R9	3.9 @ 7.96MHz	К, Ј	15 @ 7.96MHz	60	2.50	200	3R9
SWI0805FT 4R7	4.7 @ 7.96MHz	K, J	15 @ 7.96MHz	50	2.80	180	4R7
SWI0805FT 5R6	5.6 @ 7.96MHz	K, J	15 @ 7.96MHz	45	3.00	160	5R6
SWI0805FT 6R8	6.8 @ 7.96MHz	K, J	15 @ 7.96MHz	45	3.20	130	6R8
SWI0805FT 8R2	8.2 @ 7.96MHz	K, J	15 @ 7.96MHz	40	3.50	120	8R2
SWI0805FT 100	10 @ 2.52MHz	К, Ј	15 @ 2.52MHz	40	5.00	80	100

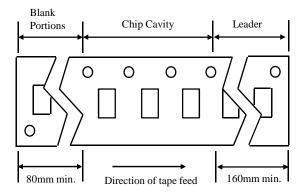
- 1. Inductance is measured in HP-4287A RF LCR meter with HP-16193 fixture.
- 2. Q is measured in HP-4287A RF LCR meter with HP-16193 fixture.
- 3. SRF is measured in ENA E5071B network analyzer or equivalent.
- 4. RDC is measured in HP-4338B milliohmeter or
- equivalent.
- 5. For 15 °C Rise. <u>Remarks :</u> Unit weight = 0.0084g (for ref.)


AOBA Technology (M) Sdn. Bhd.

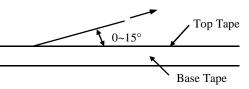
ITEM		CONDITION	SPECIFICATION		
	Inductance and	Measuring Frequency :	Within Specified Tolerance		
-	Tolerance	As shown in Product Table			
	Quality Factor	Measuring Temperature : +25°C			
	Insulation	Measured at 100V DC between	1000 mega ohms minimum		
Electrical	Resistance	inductor terminals and center of case.			
Characteristics	Dielectric	Measured at 500V AC between	No damage occurs when		
	Withstanding	inductor terminals and center of case	the test voltage is applied.		
_	Voltage	for a maximum of 1 minute.			
	Temperature	Over -40° C to $+85^{\circ}$ C at	+25 to 500 ppm/°C		
	Coefficient of	frequency specified in Product Table.	$TCL = \underline{L1 - L2} \times 10^6 \text{ (ppm /°C)}$		
	Inductance (TCL)		L1(T1-T2)		
	Component	The component shall be reflow soldered onto a	0402 series - 350g		
	Adhesion	P.C. Board ($240^{\circ}C \pm 5^{\circ}C$ for 20 seconds).	0603 series - 1.0Kg		
	(Push Test)	Then a dynometer force gauge shall be applied	Other series - 0805 ~ 1210		
		to any side of the component.	Minimum 1Kg for Ag termination		
Mechanical			and 2Kg for Mo/Mn termination.		
Characteristics	Drop Test	The inductor shall be dropped two times on the	Change In Inductance:		
-	Th 1 Ch 1	concrete floor or the vinyl tile from 1M naturally.	No more than 5%		
	Thermal Shock	Each cycle shall consist of 30 minutes at -40°C	Change In Q:		
	Test	followed by 30 minutes at +85°C with a 5 minutes	No more than 10%		
		transition time between temperature extremes.	Change In Appearance:		
	0.11	Test duration is 10 cycles.	Without distinct damage		
	Solderability	Dip pads in flux and dip in solder pot containing load free colder at 240° C + 5°C for 5 seconds	A minimum of 80% of the metalized area must be covered with solder.		
-	Resistance to	lead free solder at $240^{\circ}C \pm 5^{\circ}C$ for 5 seconds. Dip the components into flux and dip	Change In Inductance:		
	Soldering Heat	into solder pot containing lead free solder	No more than 5%		
	Soldering meat	at $260^{\circ}C \pm 5^{\circ}C$ for 5 ± 2 seconds.	Change In Q:		
-	Vibration	Inductors shall be randomly vibrated at amplitude	No more than 10%		
	(Random)	of 1.5mm and frequency of 10-55Hz : 0.04G/Hz	Change In Appearance:		
	(Random)	for a minimum of 15 minutes per axis for each of	Without distinct damage		
		the three axes.	White astalet annage		
-	Cold Temperature	Inductors shall be stored at temperature			
	Storage	of $-40^{\circ}C \pm 2^{\circ}C$ for 1000hrs (+48 -0 hrs.)			
		Then inductors shall be subjected to standard			
		atmospheric conditions for 1 hour.			
Endurance		After that, measurement shall be made.			
Characteristics	High Temperature	Inductors shall be stored at temperature			
	Storage	of $85^{\circ}C \pm 2^{\circ}C$ for 1000hrs (+48 -0 hrs.)			
	C	Then inductors shall be subjected to standard			
		atmospheric conditions for 1 hour.			
		After that, measurement shall be made.			
	Moisture	Inductors shall be stored in the chamber at 45°C	Inductors shall not have a		
	Resistance	at 90-95 R.H. for 1000 hours. Then inductors are	shorted or open winding.		
		to be tested after 2 hours at room temperature.	-		
l t	High Temperature	Inductors shall be stored in the chamber at +85°C			
	with Loaded	for 1000 hours with rated current applied.			
		Inductors shall be tested at the beginning of test at			
		500 hours and 1000 hours. Then inductors are to			
		500 hours and 1000 hours. Then inductors are to			

AOBA Technology (M) Sdn. Bhd.

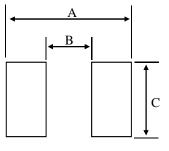

千如電子集團 ABC ELECTRONICS GROUP.


Туре	Pcs/Reel	
SWI0805	2,000	

ABO


Туре	Chip Cavity		Insert Pitch	Tape Thickness		
	А	В	F	K	Т	W
SWI0805	1.52	2.35	4.00	1.12	0.23	8.00

Top Tape Strength


The top tape requires a peel-off force of 0.2 to 0.7N in the direction of the arrow as illustrated below.

Dimensions (unit : m/m)

Туре	А	В	С
SWI0805	2.60	0.75	1.30

Recommended Pattern

