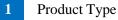


Wire Wound Chip Inductors

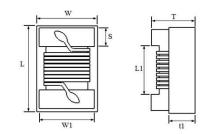
SWI0603HP Series

INTRODUCTION


The SWI HP series are wire wound chip inductors widely used in the communication applications such as cellular phones, cable modem, ADSL, repeaters, Bluetooth, and other electronic devices. The wire wound inductors advance in higher self resonate frequency, better Q factor, and lower DCR than other 0603. Precious tolerance of 2% is available.

FEATURES

- > Operating temperature -40 to $+125^{\circ}$ C for ceramic series.
- Excellent solderability and resistance to soldering heat.
- Suitable for reflow soldering.
- ▶ High reliability and easy surface mount assembly.
- > Wide range of inductance values are available for flexible needs.


PART NUMBER

SWI 0603 HP 33N J - □□

2

Chip Dimension

Size	Length (L)	Width (W)	Thickness (T)	Terminal (S)	Width (W1)	(t1)
(inch)	(inch)	(inch)	(inch)	(inch)	(inch)	(Ref.)
mm	mm	mm	mm	mm	mm	mm
SW10603 1608	(0.071 max.) 1.80 max.	0.044 max. 1.12 max.	0.040 max. 1.02 max.	$\begin{array}{rrr} (0.014 \ \pm \ 0.004) \\ 0.36 \ \pm \ 0.10 \end{array}$	(0.03 ref.) 0.76 ref.	

3	

5

Inductance Value 3N3 = 3.3nH 33N = 33nH R33 = 330nH

4 Tolerance

 $B=\pm 0.2 n H \ S=\pm 0.3 n H \ G=\pm 2\% \ J=\pm 5\% \ K=\pm 10\%$

Internal Code

This specification applies to fixed inductors of the following types used in electronic equipment :

*Ceramic Type : For lower inductance with high Q factor at high frequency and stable circuit requirement.

2 Construction

*Configuration

& Dimension : Please refer to the attached figures and tables.

*Terminals : Consist of Ag alloy followed by Nickel, then Au platting for easier soldering.

3 Operating Temperature Range

Operating Temperature Range is the scope of ambient temperature at which the inductor can be operated continuously at rated current.

*Temp. Range : Ceramic material -40°C ~ +125°C

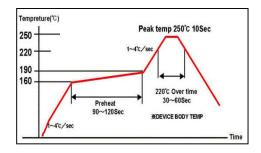
4 Ingredient of terminals electrode

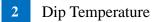
Characteristics

5

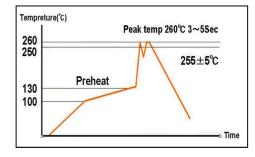
Standard Atmospheric Conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests are as follows:

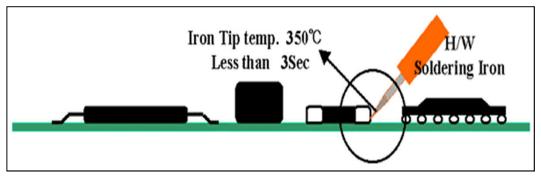

Ambient Temperature: $25^{\circ}C \pm 2^{\circ}C$ Relative Humidity: 60% to 70%Air Pressure: 86Kpa to 106Kpa


Temperature Profile

Reflow Temperature Profile


(Temperature of the mounted parts surface on the printed circuit board)

Recommended Peak Temperature : 250°C Max 250°C up /within 10secs Max. Reflow temperature : 260°C Gradient of temperature rise : av 1-4°C/sec Preheat : 160-190°C/within 90-120secs 220°C up /within 30-60secs Composition of solder Sn-3Ag-0.5Cu



3

Solder bathtub temperature : 260° C max within 5secs. Preheating temperature : $100 \sim 130^{\circ}$ C deposit solder temperature. Composition of solder Sn-3Ag-0.5Cu

Soldering iron tip temperature : Recommended temperature : 350°C max / within 3 seconds. Maximum temperature : 380°C max / within 3 seconds.

AOBA Technology (M) Sdn. Bhd.

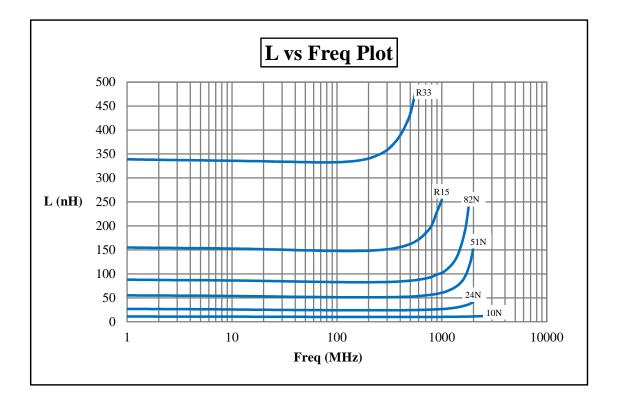
Part No.	Inductance ¹ (nH)	Tolerance	Q ² Min	S.R.F. ³ Min (MHz)	RDC ⁴ Max (Ω)	IDC ⁵ Max (mA)	Marking
SWI0603HP 1N7	1.7 @ 250MHz	B, S	24 @ 250MHz	8500	0.033	2100	-
SWI0603HP 2N2	2.2 @ 250MHz	B, S	13 @ 250MHz	7000	0.150	900	-
SWI0603HP 3N3	3.3 @ 250MHz	B, S	35 @ 250MHz	6900	0.035	1700	-
SWI0603HP 3N6	3.6 @ 250MHz	B, S	35 @ 250MHz	6900	0.035	1700	-
SWI0603HP 3N9	3.9 @ 250MHz	B, S	30 @ 250MHz	6900	0.039	1600	-
SWI0603HP 4N3	4.3 @ 250MHz	B, S	30 @ 250MHz	6000	0.045	1500	-
SWI0603HP 4N7	4.7 @ 250MHz	B, S	22 @ 250MHz	5800	0.090	1100	-
SWI0603HP 5N1	5.1 @ 250MHz	K, J, B	20 @ 250MHz	5700	0.108	1000	-
SWI0603HP 6N2	6.2 @ 250MHz	K, J, B	35 @ 250MHz	5800	0.050	1400	-
SWI0603HP 6N8	6.8 @ 250MHz	K, J, B	35 @ 250MHz	5800	0.050	1400	-
SWI0603HP 7N2	7.2 @ 250MHz	K, J, B	35 @ 250MHz	4800	0.052	1400	-
SWI0603HP 7N5	7.5 @ 250MHz	K, J, B	35 @ 250MHz	4800	0.070	1300	-
SWI0603HP 8N2	8.2 @ 250MHz	K, J, B	35 @ 250MHz	4300	0.054	1400	-
SWI0603HP 8N7	8.7 @ 250MHz	K, J, B	30 @ 250MHz	4600	0.100	1000	-
SWI0603HP 9N1	9.1 @ 250MHz	K, J	28 @ 250MHz	4300	0.108	1000	-
SWI0603HP 9N5	9.5 @ 250MHz	K, J	35 @ 250MHz	5000	0.060	1350	-
SWI0603HP 10N	10 @ 250MHz	K, J, G	35 @ 250MHz	4800	0.060	1350	-
SWI0603HP 11N	11 @ 250MHz	K, J, G	35 @ 250MHz	4200	0.060	1350	-
SWI0603HP 12N	12 @ 250MHz	K, J, G	35 @ 250MHz	4000	0.078	1200	-
SWI0603HP 15N	15 @ 250MHz	K, J, G	38 @ 250MHz	4000	0.085	1100	-
SWI0603HP 16N	16 @ 250MHz	K, J, G	38 @ 250MHz	3300	0.085	1100	-
SWI0603HP 18N	18 @ 250MHz	K, J, G	38 @ 250MHz	3100	0.078	1200	-
SWI0603HP 22N	22 @ 250MHz	K, J, G	40 @ 250MHz	3000	0.120	950	-
SWI0603HP 23N	23 @ 250MHz	K, J, G	40 @ 250MHz	2850	0.120	950	-
SWI0603HP 24N	24 @ 250MHz	K, J, G	40 @ 250MHz	2650	0.080	1100	-
SWI0603HP 27N	27 @ 250MHz	K, J	40 @ 250MHz	2800	0.125	950	-
SWI0603HP 30N	30 @ 250MHz	K, J, G	40 @ 250MHz	2400	0.130	920	-
SWI0603HP 33N	33 @ 250MHz	K, J, G	40 @ 250MHz	2300	0.170	680	-
SWI0603HP 36N	36 @ 250MHz	K, J, G	40 @ 250MHz	2300	0.150	750	-
SWI0603HP 39N	39 @ 250MHz	K, J, G	40 @ 250MHz	2200	0.180	680	-
SWI0603HP 43N	43 @ 250MHz	K, J, G	40 @ 250MHz	2100	0.170	810	-
SWI0603HP 47N	47 @ 200MHz	K, J, G	38 @ 200MHz	2000	0.200	680	-
SWI0603HP 51N	51 @ 200MHz	K, J, G	38 @ 200MHz	1900	0.250	660	-
SWI0603HP 56N	56 @ 200MHz	K, J, G	38 @ 200MHz	1900	0.230	700	-
SWI0603HP 68N	68 @ 200MHz	K, J, G	38 @ 200MHz	1700	0.280	650	-

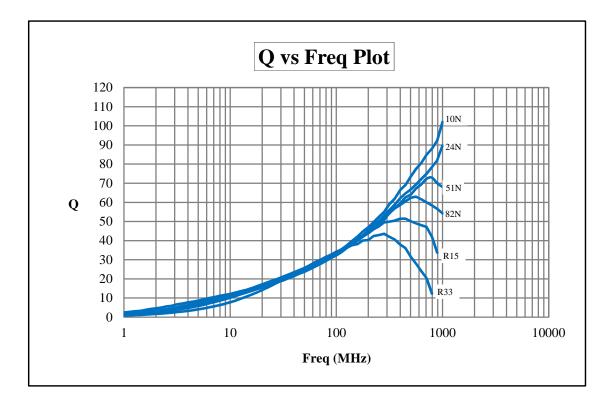
AOBA Technology (M) Sdn. Bhd.

Part No.	Inductance ¹ (nH)	Tolerance	Q ² Min	S.R.F. ³ Min (MHz)	RDC ⁴ Max (Ω)	IDC ⁵ Max (mA)	Marking
SWI0603HP 72N	72 @ 150MHz	K, J, G	34 @ 150MHz	1700	0.350	580	-
SWI0603HP 75N	75 @ 150MHz	K, J, G	34 @ 150MHz	1700	0.420	550	-
SWI0603HP 82N	82 @ 150MHz	K, J, G	34 @ 150MHz	1600	0.460	510	-
SWI0603HP 91N	91 @ 150MHz	K, J, G	34 @ 150MHz	1500	0.420	550	-
SWI0603HP R10	100 @ 150MHz	K, J, G	34 @ 150MHz	1400	0.540	470	-
SWI0603HP R11	110 @ 150MHz	K, J, G	33 @ 150MHz	1350	0.540	470	-
SWI0603HP R12	120 @ 150MHz	K, J, G	33 @ 150MHz	1300	0.650	420	-
SWI0603HP R15	150 @ 150MHz	K, J, G	30 @ 150MHz	1150	0.820	390	-
SWI0603HP R18	180 @ 100MHz	K, J, G	28 @ 100MHz	1050	1.200	320	-
SWI0603HP R20	200 @ 100MHz	K, J, G	28 @ 100MHz	1000	1.300	310	-
SWI0603HP R21	210 @ 100MHz	K, J, G	28 @ 100MHz	1000	1.900	280	-
SWI0603HP R22	220 @ 100MHz	K, J, G	28 @ 100MHz	950	1.900	280	-
SWI0603HP R25	250 @ 100MHz	K, J, G	28 @ 100MHz	900	2.000	260	-
SWI0603HP R27	270 @ 100MHz	K, J, G	28 @ 100MHz	900	2.200	260	-
SWI0603HP R30	300 @ 100MHz	K, J, G	28 @ 100MHz	780	2.700	220	-
SWI0603HP R33	330 @ 100MHz	K, J, G	28 @ 100MHz	750	2.900	200	-
SWI0603HP R36	360 @ 100MHz	K, J, G	28 @ 100MHz	720	3.800	180	-
SWI0603HP R39	390 @ 100MHz	K, J, G	28 @ 100MHz	700	3.800	180	-

When ordering, please specify tolerance Tolerance : $B=\pm0.20$ nH, $S=\pm0.30$ nH, $G=\pm2\%$,

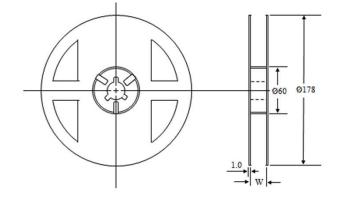
J=±5%, K=±10%


- 1. Inductance is measured in HP-4287A RF LCR meter with HP-16193 fixture.
- 2. Q is measured in HP-4287A RF LCR meter with HP-16193 fixture.
- 3. SRF is measured in ENA E5071B network analyzer or equivalent.
- 4. RDC is measured in HP-4338B milliohmeter or equivalent.


5. For 25 °C Rise.

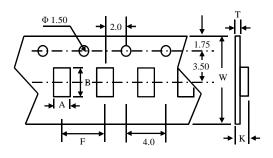
<u>Remarks :</u>

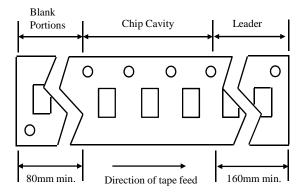
Unit weight = 0.0037g (for ref.)



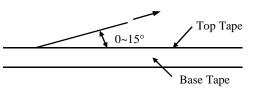
AOBA Technology (M) Sdn. Bhd.

ITEM		CONDITION	SPECIFICATION
	Inductance and	Measuring Frequency :	Within Specified Tolerance
	Tolerance	As shown in Product Table	
	Quality Factor	Measuring Temperature : +25°C	
	Insulation	Measured at 100V DC between	1000 mega ohms minimum
Electrical	Resistance	inductor terminals and center of case.	
Characteristics	Dielectric	Measured at 500V AC between	No damage occurs when
	Withstanding	inductor terminals and center of case	the test voltage is applied.
	Voltage	for a maximum of 1 minute.	
	Temperature	Over -40° C to $+85^{\circ}$ C at	+25 to 500 ppm/°C
	Coefficient of	frequency specified in Product Table.	$TCL = \underline{L1 - L2} \times 10^6 \text{ (ppm /°C)}$
	Inductance (TCL)		L1(T1-T2)
	Component	The component shall be reflow soldered onto a	0402 series - 350g minimum
	Adhesion	P.C. Board ($240^{\circ}C \pm 5^{\circ}C$ for 20 seconds).	0603 series - 900g minimum
	(Push Test)	Then a dynometer force gauge shall be applied	
		to any side of the component.	
Mechanical	Drop Test	The inductor shall be dropped two times on the	Change In Inductance:
Characteristics		concrete floor or the vinyl tile from 1M naturally.	No more than 5%
	Thermal Shock	Each cycle shall consist of 30 minutes at -40°C	Change In Q:
	Test	followed by 30 minutes at +85°C with a 5 minutes	No more than 10%
		transition time between temperature extremes.	Change In Appearance:
		Test duration is 10 cycles.	Without distinct damage
	Solderability	Dip pads in flux and dip in solder pot containing	A minimum of 80% of the metalized
		lead free solder at $240^{\circ}C \pm 5^{\circ}C$ for 5 seconds.	area must be covered with solder.
	Resistance to	Dip the components into flux and dip	Change In Inductance:
	Soldering Heat	into solder pot containing lead free solder	No more than 5%
		at $260^{\circ}C \pm 5^{\circ}C$ for 5 ± 2 seconds.	Change In Q:
	Vibration	Inductors shall be randomly vibrated at amplitude	No more than 10%
	(Random)	of 1.5mm and frequency of 10-55Hz : 0.04G/Hz	Change In Appearance:
		for a minimum of 15 minutes per axis for each of	Without distinct damage
		the three axes.	
	Cold Temperature	Inductors shall be stored at temperature	
	Storage	of $-40^{\circ}C \pm 2^{\circ}C$ for 1000hrs (+48 -0 hrs.)	
		Then inductors shall be subjected to standard	
Endurance		atmospheric conditions for 1 hour.	
Characteristics		After that, measurement shall be made.	
	High Temperature	Inductors shall be stored at temperature	
	Storage	of $85^{\circ}C \pm 2^{\circ}C$ for 1000hrs (+48 -0 hrs.)	
		Then inductors shall be subjected to standard	
		atmospheric conditions for 1 hour.	
		After that, measurement shall be made.	
	Moisture	Inductors shall be stored in the chamber at 45°C	Inductors shall not have a
	Resistance	at 90-95 R.H. for 1000 hours. Then inductors are	shorted or open winding.
		to be tested after 2 hours at room temperature.	
	High Temperature	Inductors shall be stored in the chamber at +85°C	
	with Loaded	for 1000 hours with rated current applied.	
		Inductors shall be tested at the beginning of test at	
		500 hours and 1000 hours. Then inductors are to	
		be tested after 1 hour at room temperature.	

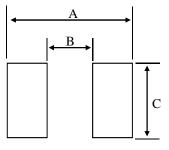

千如電子集團 ABC ELECTRONICS GROUP. AOBA Technology (M) Sdn. Bhd.


Туре	Pcs/Reel		
SWI0603	3,000		

4B(


Туре	Chip Cavity		Insert Pitch	Tape Thickness		iess
	А	В	F	К	Т	W
SWI0603	1.16	1.90	4.00	0.95	0.22	8.00

Top Tape Strength


The top tape requires a peel-off force of 0.2 to 0.7N in the direction of the arrow as illustrated below.

Dimensions (unit : m/m)

Туре	А	В	С	
SWI0603	1.92	0.64	1.27	

Recommended Pattern

