

MULTI-INNO TECHNOLOGY CO., LTD.

www.multi-inno.com

LCD MODULE SPECIFICATION

Model : MI0350AGT

This module uses ROHS material

For Customer's Acceptance:

Customer		
Approved		
Comment		

This specification may change without prior notice in	Revision	1.2
order to improve performance or quality. Please contact	Engineering	
Multi-Inno for updated specification and product status	Date	2014-02-14
before design for this product or release of this order.	Our Reference	

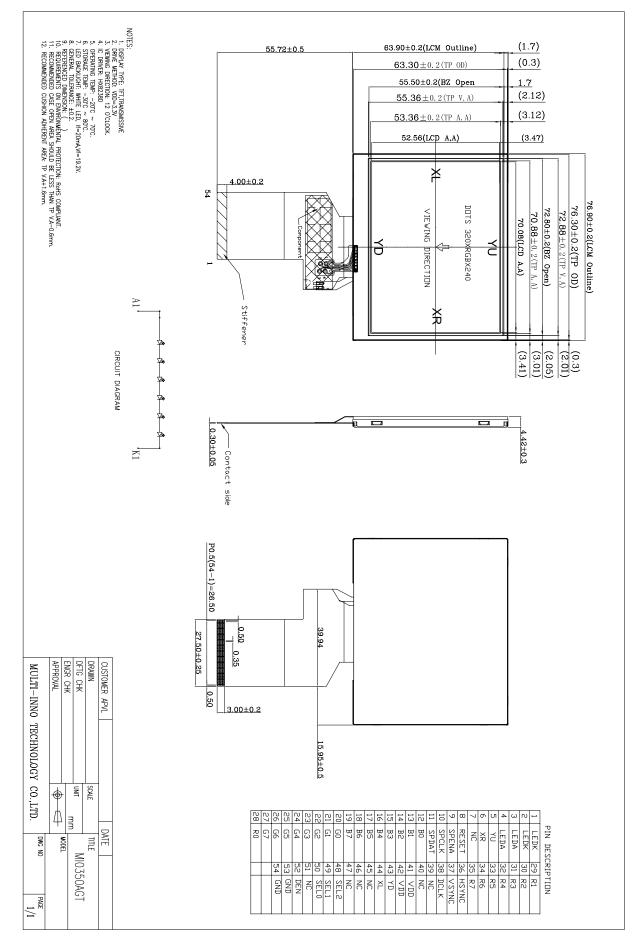
REVISION RECORD

REV NO.	REV DATE	CONTENTS	REVISED PAGE NO.
1.0	2013-07-16	First Release	
1.1	2013-09-12	Update viewing direction	
1.2	2014-02-14	Correct application notes	11-21

CONTENTS

- GENERAL INFORMATION
- EXTERNAL DIMENSIONS
- ABSOLUTE MAXIMUM RATINGS
- ELECTRICAL CHARACTERISTICS
- BACKLIGHT CHARACTERISTICS
- ELECTRO-OPTICAL CHARACTERISTICS
- INTERFACE DESCRIPTION
- BLOCK DIAGRAM
- APPLICATION NOTES
- RELIABILITY TEST
- INSPECTION CRITERION
- PRECAUTIONS FOR USING LCD MODULES
- PRIOR CONSULT MATTER

■ GENERAL INFORMATION


Item	Contents	Unit
LCD type	TFT/Transmissive/Normally white	/
Size	3.5	Inch
Viewing direction	12:00	O' Clock
Gray scale inversion direction	6:00	O'Clock
$LCM(W \times H \times D)$	76.90×63.90×4.42	mm ³
Active area (W×H)	70.08×52.56	mm ²
Pixel pitch (W×H)	0.219×0.219	mm ²
Number of dots	320 (RGB) × 240	/
Driver IC	HX8238D	/
Backlight type	6 LEDs	/
Interface type	24 bit RGB/ Serial RGB/CCIR/YUV	/
Color depth	16.7M	/
Pixel configuration	R.G.B vertical stripe	/
Surface treatment	HC	/
Input voltage	3.3	V
With/Without TSP	With TSP	/
Weight	TBD	g

Note 1:Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift. Note 2 : RoHS compliant;

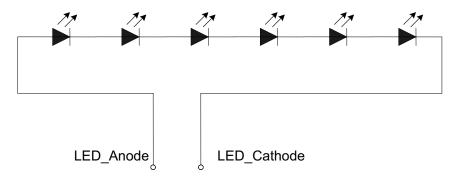
Note 3: LCM weight tolerance: \pm 5%.

EXTERNAL DIMENSIONS

■ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit
Supply voltage	VCC	-0.3	4.0	V
Input voltage for logic	VDDIO	-0.5	VCC+3.0	V
Operating temperature	Тор	-20	70	°C
Storage temperature	Тѕт	-30	80	°C
Humidity	RH	-	90%(Max60°C)	RH

ELECTRICAL CHARACTERISTICS


DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	VCC	2.6	3.3	3.6	V
Input voltage ' H ' level	Vih	0.8VDD	-	VDD	V
Input voltage 'L' level	VIL	GND	-	0.2VDD	V
Output voltage ' H ' level	Voh	0.8VDD	-	VDD	V
Output voltage ' L ' level	Vol	GND	-	0.2VDD	V

■ BACKLIGHT CHARACTERISTICS

Item	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward voltage	Vf	-	19.2	20.4	V	
Forward current	If	-	20	25	mA	
Power consumption	WBL	-	384	510	mW	

Note 1: The figure below shows the connection of backlight LED.

Note 2: One LED : I_F =20 mA, V_F =3.2V

Note 3: The minimal life of LED : 20,000 hours

Item		Symbol	Condition	Min	Тур	Max	Unit	Remark	Note
Response	time	Tr+Tf			50	80	ms	FIG 1.	4
Contrast r		Cr	θ=0°	200	350			FIG 2.	1
Luminar uniform		δ WHITE	Ø=0° Ta=25℃	75	80		%	FIG 2.	3
Surface Lum	inance	Lv		190	240		cd/m ²	FIG 2.	2
			$\emptyset = 90^{\circ}$	30	40		deg	FIG 3.	
Viewing angl	a ranga	θ	$\emptyset = 270^{\circ}$	50	60		deg	FIG 3.	6
	e range	Ø	$\varnothing = 0^{\circ}$	50	60		deg	FIG 3.	
			$\emptyset = 180^{\circ}$	50	60		deg	FIG 3.	
	Red	Х		0.609	0.639	0.669			
		у		0.314	0.344	0.374			
	Green	X	θ=0°	0.264	0.294	0.324			
CIE (x, y)	Green	У	Ø=0°	0.557	0.587	0.617		FIG 2.	5
chromaticity	Blue	Х	Ta=25℃	0.102	0.132	0.162		110 2.	
	Diuc	У	1 a-25 C	0.106	0.136	0.166			
	White	Х		0.282	0.312	0.342]		
	white	у		0.319	0.349	0.379			
NTSC	-	-	_		50		%	-	-

ELECTRO-OPTICAL CHARACTERISTICS

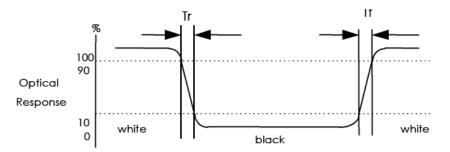
Note 1. Contrast Ratio(CR) is defined mathematically as For more information see FIG 2.

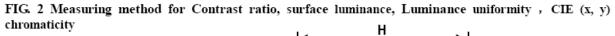
Contrast Ratio = <u>Average Surface Luminance with all white pixels (P1, P2, P3, P4, P5)</u> Average Surface Luminance with all black pixels (P1, P2, P 3, P4, P5)

Note 2. Surface luminance is the LCD surface from the surface with all pixels displaying white. For more information see FIG 2.

Lv = Average Surface Luminance with all white pixels (P1, P2, P 3, P4, P5)

Note 3. The uniformity in surface luminance δ WHITE is determined by measuring luminance at each test position 1 through 5, and then dividing the maximum luminance of 5 points luminance. For more information see FIG 2.


 $\delta \text{ WHITE} = \underbrace{\text{Minimum Surface Luminance with all white pixels (P1, P2, P 3, P4, P5)}}_{\text{Maximum Surface Luminance with all white pixels (P1, P2, P 3, P4, P5)}}$


- Note 4. Response time is the time required for the display to transition from White to black(Rise Time, Tr) and from black to white(Decay Time, Tf). For additional information see FIG 1. The test equipment is Autronic-Melchers's ConoScope. Series.
- Note 5. CIE (x, y) chromaticity, The x, y value is determined by measuring luminance at each test position 1 through 5, and then make average value.
- Note 6. Viewing angle is the angle at which the contrast ratio is greater than 2. For TFT module the conrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 3.
- Note 7. For viewing angle and response time testing, the testing data is base on Autronic-Melchers's ConoScope. Series Instruments For contrast ratio, Surface Luminance, Luminance uniformity, CIE The test data is base on TOPCON's BM-5 photo detector.

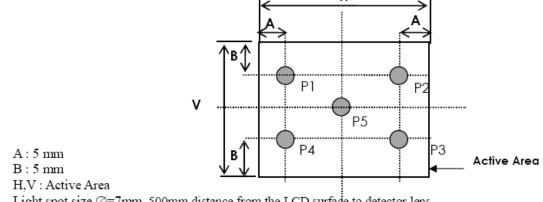
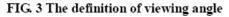
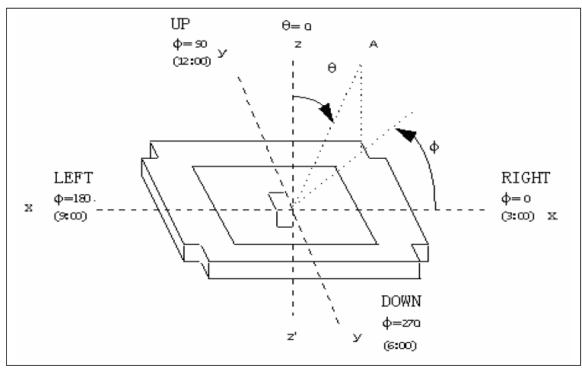


FIG. 1 The definition of Response Time


The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".



Light spot size Ø=7mm, 500mm distance from the LCD surface to detector lens measurement instrument is TOPCON's luminance meter BM-5

■ INTERFACE DESCRIPTION

Pin	Symbol	Description
No.	LED	Backlight LED Ground
2	LED	Backlight LED Ground
3	LED+	Backlight LED Power
4	LED+	Backlight LED Power
5	YU	Touch panel up side
6	XR	Touch panel right side
7	NC	Not Use
8	/RESET	Hardware Reset
9	SPENA	SPI Interface Data Enable Signal
10	SPCLK	SPI Interface Data Clock
11	SPDAT	SPI Interface Data
12	BO	Blue Data Bit 0
13	B1	Blue Data Bit 1
14	B2	Blue Data Bit 2
15	B3	Blue Data Bit 3
16	B4	Blue Data Bit 4
17	B5	Blue Data Bit 5
18	B6	Blue Data Bit 6
19	B7	Blue Data Bit 7
20	GO	Green Data BitO
21	G1	Green Data Bit1
22	G2	Green Data Bit2
23	G3	Green Data Bit3
24	G4	Green Data Bit4
25	G5	Green Data Bit5
26	G6	Green Data Bit6
27	G7	Green Data Bit7
28	RO	Red Data Bit0 /DX0
29	R1	Red Data Bit1 /DX1
30	R2	Red Data Bit2 /DX2
31	R3	Red Data Bit3 /DX3
32	R4	Red Data Bit4 /DX4
33	R5	Red Data Bit5 /DX5
34	R6	Red Data Bit6 /DX6
35	R7	Red Data Bit7 /DX7

36	HSYNC	Horizontal Sync Input
37	VSYNC	Vertical Sync Input
38	DCLK	Dot Data Clock
39	NC	Not Use
40	NC	Not Use
41	VCC	Digital Power
42	VCC	Digital Power
43	YD	Touch panel bottom side
44	XL	Touch panel left side
45	NC	Not Use
46	NC	Not Use
47	NC	Not Use
48	SEL2	Control the input data format /floating
49	SEL1	Control the input data format
50	SEL0	Control the input data format
51	NC	Not Use
52	DE	Data Enable Input
53	DGND	Ground
54	AVSS	Ground

Note:

1. The mode control (SEL2) not use ,it can't control CCIR601 interface , If not use CCIR601 ,it

can floating.

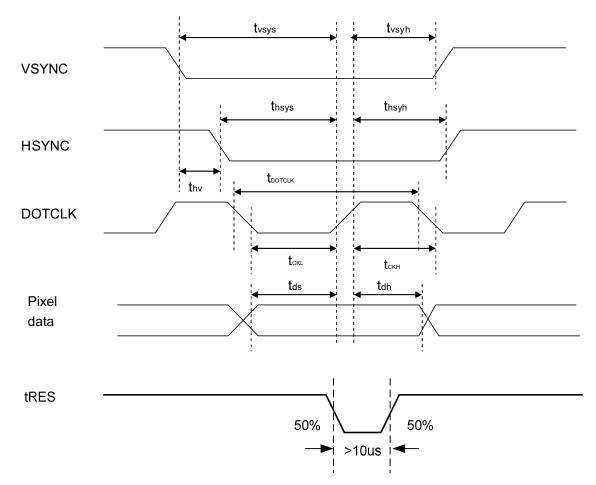
2. For digital RGB input data format, both SYNC mode and DE+SYNC mode are supported. If \mbox{DE}

signal is fixed low, SYNC mode is used. Otherwise, DE+SYNC mode is used. Suggest used SYNC mode!!

Suggest the DE signal usually pull low.

3. usually pull high.

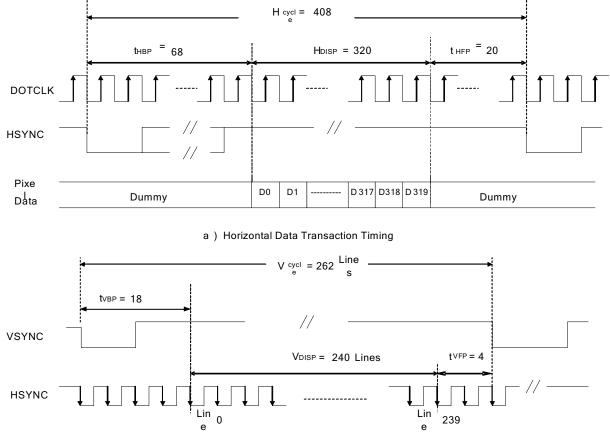
selected serial RGB、CCIR601/656 interface,DX BUS will enable,Digital input mode DXO is LSB and DX7 is MSB.


SEL2	SEL1	SEL0	Interface Mode
0	0	0	Parallel-RGB Data format interface (only support stripe type color filter)
0	0	1	Serial-RGB data format
0	1	0	CCIR 656 data format (640RGB)
0	1	1	CCIR 656 data format (720RGB)
1	0	0	YUV mode A data format(Cr-Y-Cb-Y)
1	0	1	YUV mode A data format(Cr-Y-Cb-Y)
1	1	0	YUV mode B data format(Cb-Y-Cr-Y)
1	1	1	YUV mode B data format(Cb-Y-Cr-Y)

■ APPLICATION NOTES

1.AC Characteristics

(Unless otherwise specified, Voltage Referenced to Vss, VDDIO = 2.2V, TA = 25° C)



Characteristics	Symbol	Min.		Тур.		Max.		Unit
Characteristics	Symbol	24 bit			24 bit	8 bit	Unit	
DOTCLK Frequency	fDOTCLK	-	-	6.5	19.5	10	30	MHz
DOTCLK Period	tDOTCLK	100	33.3	154	51.3	-	-	ns
Vertical Sync Setup Time	tvsys	20	10	-	-	-	-	ns
Vertical Sync Hold Time	tvsyh	20	10	-	-	-	-	ns
Horizontal Sync Setup Time	thsys	20	10	-	-	-	-	ns
Horizontal Sync Hold Time	thsyh	20	10	-	-	-	-	ns
Phase difference of Sync Signal Falling Edge	thv		1 -		-	240		tDOTCLK
DOTCLK Low Period	tCKL	50	15	-	-	-	-	ns
DOTCLK High Period	tCKH	50	15	-	-	-	-	ns
Data Setup Time	tds	12	10	-	-	-	-	ns
Data hold Time	tdh	12	10	-	-	-	-	ns
Reset pulse width	tRES	1	0	-	-	-	-	us

Note: External clock source must be provided to DOTCLK pin of HX8238-D. The driver will not operate if absent of the clocking signal.

Table1.1 Pixel Timing

b) Vertical Data Transaction Timing

Figure 1.2 Data Transaction Timing in Parallel RGB (24 bit) Interface (SYNC Mode)

Characteristics		Symbol	Mi	n-	Ту	р.	M	ax.	Unit
Characterist	1105	Symbol	24 bit	8 bit	24 bit	8 bit	24 bit	8 bit	Unit
DOTCLK Frequence	cy .	fDOTCLK	-	-	6.5	19.5	10	30	MHz
DOTCLK Period	-	tDOTCLK	100	33.3	154	51.3	-	-	ns
Horizontal Frequen	icy (Line)	fH	-		14	.9	22	.35	KHz
Vertical Frequency	(Refresh)	fV	-		6	C	9	0	Hz
Horizontal Back Po	orch	tHBP	-	-	68	204	-	-	tDOTCLK
Horizontal Front Po	orch	tHFP	-	-	20	60	-	-	tDOTCLK
Horizontal Data Sta	art Point	tHBP	-	-	68	204	-	-	tDOTCLK
Horizontal Blanking	Period	tHBP + tHFP	-	-	88	264	-	-	tDOTCLK
Horizontal Display	Area	HDISP	-	-	320	960	-	-	tDOTCLK
Horizontal Cycle		Hcycle	-	-	408	1224	450	1350	tDOTCLK
Vertical Back Porch	า	tVBP	-		18		-		Lines
Vertical Front Porcl	h	tVFP	-		4		-		Lines
Vertical Data Start	Point	tVBP	-		18		-		Lines
Vertical Blanking P	eriod	tVBP + tVFP	-		22		-		Lines
Martical Diamlass	NTSC				24	0			
Vertical Display		VDISP	-			280(PALM=0)		-	Lines
Area PAL VDIO					288(PALM=1)		1		
Vartical Cycle	NTSC	Vovala	-		262		1 050		Linco
Vertical Cycle	PAL	Vcycle			31	3	3	50	Lines

Table1.2 Data Transaction Timing in Normal Operating Mode

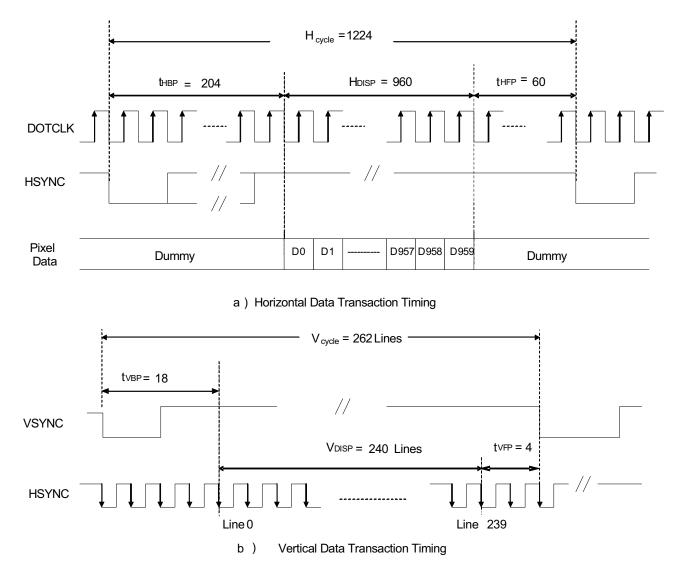
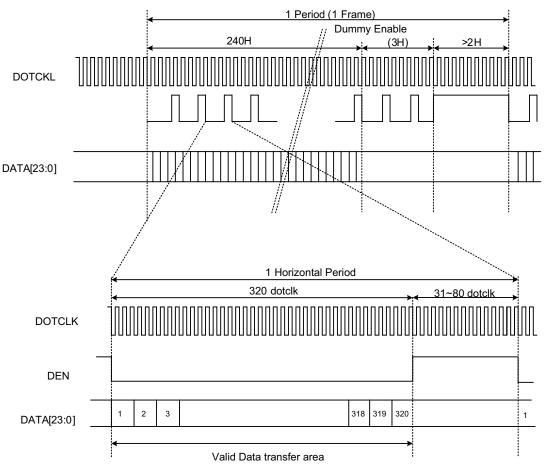
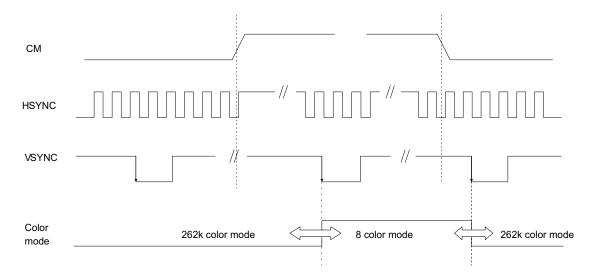




Figure 1. 3 Data Transaction Timing in Serial RGB (8 bit) Interface (SYNC Mode)

Note: The color mode conversion starts at the first falling edge of VSYNC after stage change of CM.

Figure1.5 Color Mode Conversion Timing

SEL[2:0]	I = 100, NTSC /PAL
HSYNC	← H _{cycle} = 1560
DOTCLK	
RR[7:0]	Invalid Data
	thep = HBP[6:0]*4+STP[1:0] → Holsp = 1280 →
SEL[2:0]	I = 101, NTSC
HSYNC	← H _{cycle} = 1716
normo	
DOTCLK	
RR[7:0]	Invalid Data
	← t _{HBP} = HBP[6:0]*4+STP[1:0]
SEL[2:0]] = 101, PAL
HSYNC	← H _{cycle} = 1728
DOTCLK	
RR[7:0]	Invalid Data
	← t _{HBP} = HBP[6:0]*4+STP[1:0] → ← H _{DISP} = 1440 →
SEL[2:0]] = 110, NTSC
SEL[2:0] HSYNC	J = 110, NTSC ← H _{cycle} = 1716
	H _{cycle} = 1716
HSYNC	H _{cycle} = 1716
HSYNC DOTCLK	
HSYNC DOTCLK RR[7:0]	H _{cycle} = 1716
HSYNC DOTCLK RR[7:0]	H _{cycle} = 1716 H _{cycle} = 1716 // // // // Invalid Data Cb1 X 1 X Cr1 X 2 Cb360 X719 X Cr360 X 720 X Invalid Data + tHBP = HBP[6:0]*4+STP[1:0] + HDISP = 1440
HSYNC DOTCLK RR[7:0] SEL[2:0]	$H_{cycle} = 1716$ $H_{cycle} = 1716$ $H_{cycle} = 1716$ $H_{cycle} = 1716$ $H_{cycle} = 1726$ $H_{cycle} = 1728$
HSYNC DOTCLK RR[7:0] SEL[2:0] HSYNC	$H_{cycle} = 1716$ $H_{cycle} = 1716$ $H_{cycle} = 1716$ $H_{cycle} = 1716$ $H_{cycle} = 1726$ $H_{cycle} = 1728$
HSYNC DOTCLK RR[7:0] SEL[2:0] HSYNC DOTCLK	H _{cycle} = 1716 H _{cycle} = 1716 H _{cycle} = 1716 H _{cycle} = 1716 H _{cycle} = 1728 H _{cycle} = 1440 H _{cycle} = 1728
HSYNC DOTCLK RR[7:0] SEL[2:0] HSYNC DOTCLK RR[7:0]	$H_{opds} = 1716$ $H_{opds} = 1728$ $H_{opds} = 1440$ $H_{opds} = 1728$ $H_{opds} = 1440$
HSYNC DOTCLK RR[7:0] SEL[2:0] HSYNC DOTCLK RR[7:0]	H _{cycla} = 1716 H _{cycla} = 1716 H _{cycla} = 1716 H _{cycla} = 1716 H _{cycla} = 1728 H _{cycla} = 1728
HSYNC DOTCLK RR[7:0] SEL[2:0] HSYNC DOTCLK RR[7:0] SEL[2:0]	$H_{cycle} = 1716$ $H_{cycle} = 1716$ $H_{cycle} = 1716$ $H_{cycle} = 1716$ $H_{cycle} = 1728$ $H_{cycle} = 110, PAL$ $H_{cycle} = 1728$
HSYNC DOTCLK RR[7:0] SEL[2:0] HSYNC SEL[2:0] HSYNC	$H_{cycle} = 1716$ $H_{cycle} = 1716$ $H_{cycle} = 1716$ $H_{cycle} = 1716$ $H_{cycle} = 1728$ $H_{cycle} = 110, PAL$ $H_{cycle} = 1728$

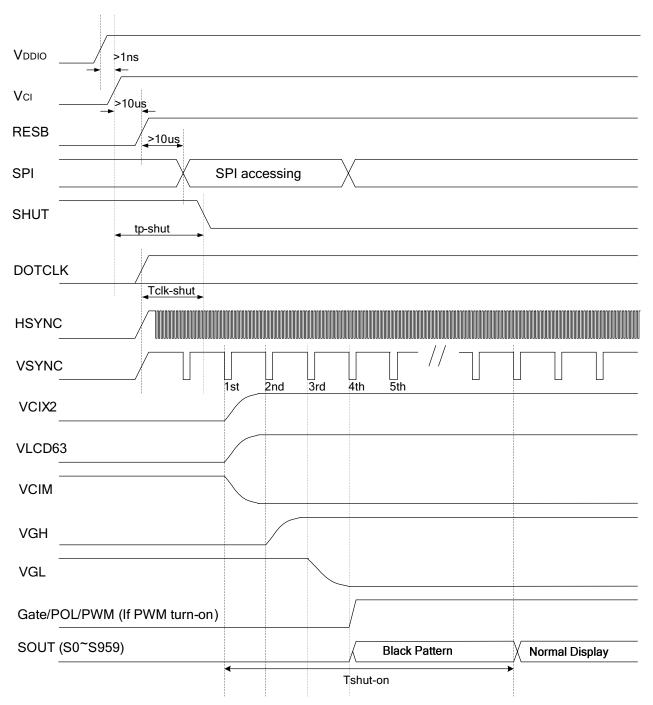
Figure 1.6 CCIR601 Horizontal Timing

SELP	- 100 ~ 111 NTSC	
SELĮZ	2:0] = 100 ~ 111, NTSC	
VSYNC	EVEN Field ODD Field	
HSYNC		
	1 2 3 4 5 6 7 22 23 24 25	261 262 263
RR[7:0]	t _{VBP} = VBP[6:0] → DL1 DL2 DL3	DL239DL240
VSYNC	ODD Field EVEN Field	
HSYNC		
RR[7:0]	t _{VBP} = VBP[6:0] + 1 DL1 DL2 DL3	DL239DL240
SEL[2	2:0] = 100 ~ 111, PAL, PALM=0	
	EVENODD Field	
VSYNC		
HSYNC		
	1 2 3 4 5 6 7 26 27 28 29	305 306 307
RR[7:0]	typp = VBP[6:0] → DL1 DL2 DL3	DL279DL280
	ODDEVEN Field	
VSYNC		
HSYNC		
	313 314 315 316 317 318 319 [339 340 341 342	618 619 620
RR[7:0]]t _{VBP} = VBP[6:0] + 1► DL1 DL2 DL3	DL279DL280
SEL[2	2:0] = 100 ~ 111, PAL, PALM=1	
	EVEN ODD Field	
VSYNC		
HSYNC		
	<u>1 2 3 4 5 6 7</u> <u>22 23 24 25</u>	309 310 311
RR[7:0]] ←t _{/BP} = VBP[6:0] → DL1 DL2 DL3	DL287DL288
VSYNC	Field	
HSYNC		
	313 314 315 316 317 318 319 335 336 337 338	622 623 624
RR[7:0]	= VBP[6:0] + 1	DL287DL288

Figure 1.7 CCIR601 Vertical Timing

SEL[2:0] =010,	NTSCPAL
_	
DOTCLK	$[-] \ $
RR[7:0]	X FF 00 X Cb1 Y1 Y1 Y2 Cb320 Y640 FF 00 X X X X Y1 Y2 Y2 Y640 FF X X X X X X Y1 Y2 Y2 Y640 YF X <t< td=""></t<>
	←H ₀₅ P = HBP[6:0]*4*STP[1:0] → ← H ₀₅ P = 1280
	←H _{yde} = 1560
SEL[2:0] =011,	NTSC
DOTCLK	
RR[7:0]	X FF X 00 X 00 X EAV X Invalid Data X FF X 00 X 00 X SAV X Cb1 X Y1 X Cr1 X Y2
	حــــــــــــــــــــــــــــــــــــ
	← H _{olds} =1716
SEL[2:0] =011,	PAL
DOTCLK	
RR[7:0]	X FF X 00 X 00 X EAV X Invalid Data X FF X 00 X 00 X SAV X Cb1 X Y1 X Cr1 X Y2
	←Hgyp = 1440

Figure 1. 8 CCIR656 Horizontal Timing


—H_{cycle} = 1728—

SEL[2:0] = 010, 011, NTSC (F=0 è ODD field, F=1 è EVEN field)	
H 1_1_1_1_1	
H 1_1_1_1_1_1_1_1_1 [261]262]263]264 [265 [266 [267]268]	
SEL[2:0] = 010, 011, PAL, PALM=0 (F=0 è ODD field, F=1 è EVEN field) H 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_	
RR[7:0] <u>D1278</u> D1280	
н <u>1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,</u>	
	t _{VBP} = VBP[6:0] + 1
SEL[2:0] = 010, 011, PAL, PALM=1 (F=0 è ODD field, F=1 è EVEN field) H Image: Constraint of the second s	
RR[7:0] <u>522835228452285522855228552288552288552288552288552288552288552288552288552288552288555555</u>	DL1]DL2]DL3]DL4]DL5]DL6]DL7]DL8
F	= VBP[6:0] + 1 □L1]DL2]DL3]DL4]DL5]DL6]DL7]

Figure1. 9 CCIR656 Vertical Timing

Characteristics	Symbol	Min.	Тур.	Max.	Unit
VDDD / VDDIO on to falling edge of SHUT	tp-shut	1	-	-	us
DOTCLK	tclk-shut	1	-	-	clk
Falling edge of SHUT to display start		-	-	14	frame
- 1 line: 408 clk - 1 frame: 262 line -DOTCLK = 6.5MHz	tshut-on	-	166	232.4	ms

Note: It is necessary to input DOTCLK before the falling edge of SHUT.

Display starts at 10th falling edge of VSTNC after the falling edge of SHUT.

Table1.3 Power Up Sequence

- V _{DDIO}							
V DDIO							
Vci							
RESB							
SPI		SPI	accessing				
SHUT							
DOTCLK							
HSYNC							
VSYNC		lst	2nd	Brd	_4th	5th	6th
VCIX2							Floating
VLCD63							Floating
VCIM							Floating
VGH							Floating
VGL							VGL discharge to ground
Gate/POL	/PWM (If PWM turn-or)					
SOUT	Normal Display	Black I	Pattern(for norma	ally Black), or W	hite Pattern(for 1		λ
(\$0~\$959))	•		Tshut-o	ff		

Figure 1. 11 Power Down Sequence

Characteristics	Symbol	Min.	Тур.	Max.	Unit
Rising edge of SHUT to display off		2	-	-	frame
- 1 line: 408 clk	tshut-off				
- 1 frame: 262 line	ishut-on	33.4	-	-	ms
- DOTCLK = 6.5MHz					

Note: DOTCLK must be maintained at lease 2 frames after the rising edge of SHUT.

Display become off at the 2nd falling edge of VSTNC after the falling edge of SHUT.

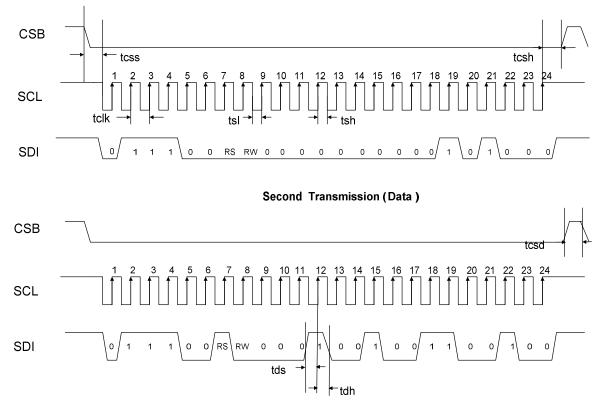

If RESET signal is necessary for power down, provide it after the 2-frames-cycle of the SHUT period.

Table1. 4 Power Down Sequence

• Write SPI

Note: The example writes "0x1264h" to register R28h. SPID connected to VSS.

Figure1.12 (a) SPI interface Timing Diagram & Write SPI Example

■ RELIABILITY TEST

No.	Test Item	Test Condition	Inspection after test
1	High Temperature Storage	80 ± 2 °C/240 hours	
2	Low Temperature Storage	-30 ± 2 °C/240 hours	
3	High Temperature Operating	$70\pm2^{\circ}C/240$ hours	
4	Low Temperature Operating	-20 ± 2 °C/240 hours	
5	Temperature Cycle	$-30\pm2^{\circ}C\sim25\sim80\pm2^{\circ}C\times10$ cycles	
6	Damp Proof Test	$60^{\circ}\text{C} \pm 5^{\circ}\text{C} \times 90\%$ RH/160 hours	
7	Vibration Test	Frequency: 10Hz~55Hz~10Hz Amplitude: 1.5mm, X, Y, Z direction for total 3hours (Packing condition)	Inspection after 2~4hours storage at room temperature, the sample shall be free from defects: 1.Air bubble in the LCD;
8	Drooping test	Drop to the ground from 1m height, one time, every side of carton. (Packing condition)	 2.Sealleak; 3.Non-display; 4.missing segments; 5.Glass crack;
9	ESD test	Voltage:±8KV R: 330Ω C: 150pF Air discharge, 10time	6.Current Idd is twice higher than initial value. 7. The surface shall be free
10	Hitting test	1,000,000 times in the same point, Hitting pad: tip R3.75 mm,Silicone rubber, Hardness:40 deg.; Load: 2.45N; Hitting speed: Twice/sec; Electric load: None; Test area should be at 1.8 mm inside of insulation.	 7. The surface shall be need from damage. 8. Linearity must be no more than 1.5% by the linearity tester. 9. The Electric charact eristics requirements shall be satisfied.
11	Pen sliding durability test	100, 000 times minimum Hitting pad: tip R0.8 mm Plastic pen; Load: 1.47N; Sliding speed: 60 mm/sec; Electric load: None Test area should be at 1.8 mm inside of insulation.	

Remark:

1. The test samples should be applied to only one test item.

2.Sample size for each test item is $5\sim10$ pcs.

3.For Damp Proof Test, Pure water(Resistance>10M Ω) should be used.

4.In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judge as a good part.

5.EL evaluation should be excepted from reliability test with humidity and temperature: Some defects such as black spot/blemish can happen by natural chemical reaction with humidity and Fluorescence EL has.

6.Failure Judgment Criterion: Basic Specification, Electrical Characteristic, Mechanical Characteristic, Optical Characteristic.

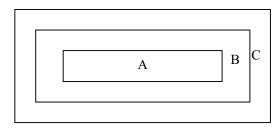
■ INSPECTION CRITERION

M	OUTGOING QUALITY STANDARD	PAGE 1 OF 7
TITLE:FUNCTIO	NAL TEST & INSPECTION CRITERIA	

This specification is made to be used as the standard acceptance/rejection criteria for Color mobile phone LCM with touch panel.

1 Sample plan

Sampling plan according to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, normal level 2 and based on:


Major defect: AQL 0.65

Minor defect: AQL 1.5

2. Inspection condition

Viewing distance for cosmetic inspection is about 30cm with bare eyes, and under an environment of 20~40W light intensity, all directions for inspecting the sample should be within 45° against perpendicular line.

3. Definition of inspection zone in LCD.

Zone A: character/Digit area

Zone B: viewing area except Zone A (ZoneA+ZoneB=minimum Viewing area)

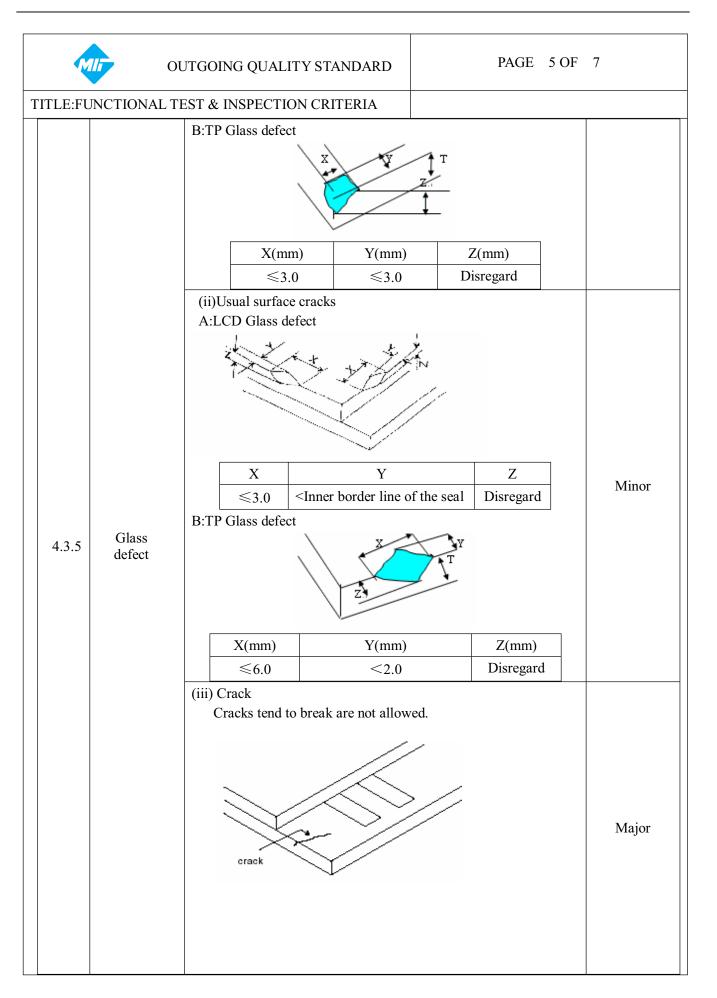
Zone C: Outside viewing area (invisible area after assembly in customer's product)

Fig.1 Inspection zones in an LCD.

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble for quality and assembly of customer's product.

M	οι	JTGOING QUALITY	Y STANDARD		PAGE 2	OF 7		
TLE:FU	JNCTIONAL TH	EST & INSPECTION	CRITERIA					
Inspec	tion standards	5						
.1 Maj	or Defect							
Item No	Items to be inspected		Inspection	Standard		Classificatio of defects		
4.1.1	All functional defects	 3) Missing vertical, 4) Short circuit 	2) Display abnormally3) Missing vertical, horizontal segment					
4.1.2	Missing	Missing component				Major		
4.1.3	Outline dimension	Overall outline dim	Overall outline dimension beyond the drawing is not allowed.					
4.1.4	linearity	No more than 1.5%	No more than 1.5%					
.2 Cos	metic Defect							
Item No	Items to be inspected		Inspection	Standard		Classification of defects		
	Clear Spots Black and	For dark/white spot as $\Phi = \frac{(x+y)}{2}$						
	white Spot	1.						
	defect	Zone Size(mm)	Ac	cceptable Q	ty			
	Pinhole,	Size(iiiii)	A	В	C	Minor		
	Foreign	Φ≤0.1	Ignor	·e				
	Particle,	$0.10 < \Phi \le 0.15$	2					
	polarizer Dirt	0.15<Φ≤0.20	1		- Ignore			
4.2.1		0.20<Φ	0					
		2.						
		Zone	Ac	cceptable Q	ty			
		Size(mm)	А	В	С			
	Clear Spots	Φ≤0.1	Ignor	·e				
	TP Dirt	0.10<Φ≤0.15	3		Ignore	Minor		
		0.15<Φ≤0.25	2					
		0.25<Φ	0					

LE: F	UNCTIONAL TI		CTION	I CRITERIA	A					
		3.								
	Dim Spots	2. Zone		Acceptable Qty						
		Size(mm) $\Phi \leq 0.2$ $0.20 < \Phi \leq 0.40$ $0.40 < \Phi \leq 0.60$ $0.60 < \Phi$		А	В		С			
	Circle			0.40 2 Ig				Minor		
	shaped and dim edged									
	defects					gnore				
				0						
	metic Defect									
Item No	Items to be inspected			Inspecti	on Standa	rd			Classification of defects	
	Line defect Black line, White line, Foreign material on polarizer	size(mm) Acceptable Qty								
		L(Lenoth)	(Length) W(Width)		zone					
		k line,			A	В	C			
		Ignore	W	/≤0.02	Ig	nore	e			
		L≤3.0	0.02<	<w≤0.03< td=""><td></td><td>2</td></w≤0.03<>		2				
		L≤2.0	0.03<	<w≤0.05< td=""><td></td><td>1</td><td>Ignore</td></w≤0.05<>		1	Ignore			
			0.	05 <w< td=""><td>Defin</td><td>e as spot efect</td><td colspan="2"></td></w<>	Defin	e as spot efect				
4.2.2		The line car condition:	n be see	en after mo	bile pho	ne in the c	operating		– Minor	
	Foreign material on TP film	size(mm))	Acceptable Qty]			
		L(Length) W(Widtl		Width) -	zone					
				vv (wiull)	А	В	C		
		Ignore	W	≪0.03	Ignore					
		L≪5.0		8 <w≤ 0.05</w≤ 		3	Ignore			
			0.0)5 <w< td=""><td>Define as</td><td>spot defect</td><td colspan="2"></td><td></td></w<>	Define as	spot defect				
		If the scra assembling defect of 4.2	or in				-			



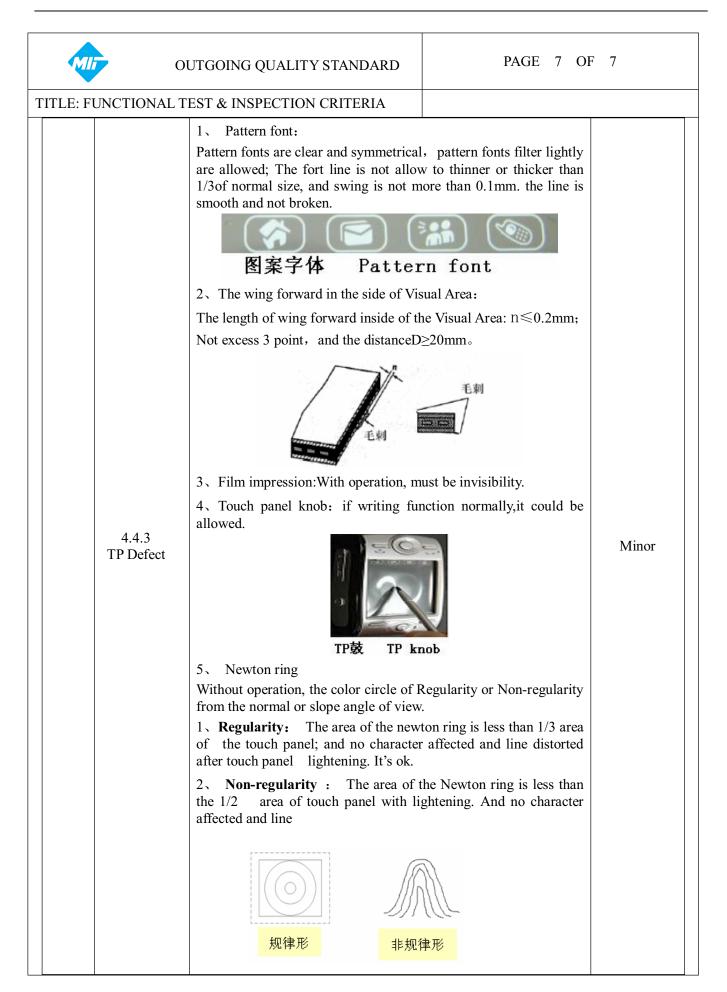
OUTGOING QUALITY STANDARD						PAGE 4 OF 7				
TIT	LE:FU	NCTIONAL TE	EST & INSPECTIO							
		Dim line defect Polarizer scratch TP film scratch	Size(mm)			Acceptable Qty				
			L(Length)	W(Width)		Zone		-		
					A	В	C		Minor	
4	4.2.3		Ignore	W≪0.03	Ig	nore				
			5.0 <l≤10.0< td=""><td>0.03<w≤0.0< td=""><td>5</td><td>2</td><td>Ţ</td><td></td></w≤0.0<></td></l≤10.0<>	0.03 <w≤0.0< td=""><td>5</td><td>2</td><td>Ţ</td><td></td></w≤0.0<>	5	2	Ţ			
				L≤5.0	0.05 <w≤0.08< td=""><td>3</td><td>1</td><td>Ignore</td><td></td><td></td></w≤0.08<>	3	1	Ignore		
				0.08 <w< td=""><td></td><td>0</td><td>-</td><td></td><td></td></w<>		0	-			
		Polarize Air bubble	Air bubbles betw	een glass & pola	rizer		1			
			2. Zone	Acceptable Qt		le Qty				
				Size(mm)	A	В		С		
	4.2.4		Φ≤0.2	Ignore					Minor	
			0.20<Φ≤0.30	2						
			0.30<Φ≤0.50) 1			Ignore			
			0.50<Φ	0						

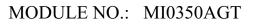
4.3. Cosmetic Defect

Item No	Items to be inspected	Ir	Classification of defects			
		(i) Chips on corner A:LCD Glass defect x z x ≤ 2.0 Notes: S=contact pa Chips on the corner of te the ITO pad or expose pe	rminal shall not b	Z Disregard we allowed to exten	nd into	Minor

OUTGOING QUALITY STANDARD

PAGE 6 OF 7


TITLE: FUNCTIONAL TEST & INSPECTION CRITERIA


4.4 Parts Defect

MF

Item No	Items to be inspected	Inspection Standard	Classification of defects	
	4.4.1 Parts contraposition	 Not allow IC and FPC/heat-seal lead width is more than 50% beyond lead pattern. Not allow chip or solder component is off center more than 50% of the pad outline. 	Major	
	4.4.2 SMT	According to the <acceptability assemblies="" electronic="" of=""> IPC-A-610C class 2 standard. Component missing or function defect are Major defect, the others are Minor defect.</acceptability>	1	

PRECAUTIONS FOR USING LCD MODULES

Handing Precautions

(1) The display panel is made of glass and polarizer. As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring. Do not subject it to a mechanical shock by dropping it or impact.

(2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.

(3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. Do not touch the display with bare hands. This will stain the display area and degraded insulation between terminals (some cosmetics are determined to the polarizer).

(4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). Do not put or attach anything on the display area to avoid leaving marks on. Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizer. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.

(5) If the display surface becomes contaminated, breather on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents

- Isopropyl alcohol

- Ethyl alcohol

Do not scrub hard to avoid damaging the display surface.

(6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.

- Water

- Ketone

- Aromatic solvents

Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading. Avoid contacting oil and fats.

(7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.

(8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.

(9) Do not attempt to disassemble or process the LCD module.

(10) NC terminal should be open. Do not connect anything.

(11) If the logic circuit power is off, do not apply the input signals.

(12) Electro-Static Discharge Control, Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

- Before remove LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential. Be sure to ground the body when handling the LCD modules.

- Tools required for assembling, such as soldering irons, must be properly grounded. make certain the AC power source for the soldering iron does not leak. When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.

- To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions. To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended. As far as possible make the electric potential of your work clothes and that of the work bench the ground potential

- The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated

(13) Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.

- Do not alter, modify or change the shape of the tab on the metal frame.

- Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.

- Do not damage or modify the pattern writing on the printed circuit board.

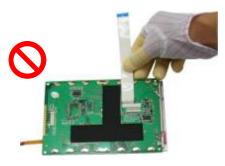
- Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.

- Except for soldering the interface, do not make any alterations or modifications with a soldering iron.

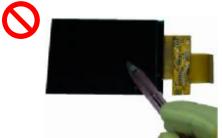

- Do not drop, bend or twist LCM.

Handling precaution for LCM

LCM is easy to be damaged. Please note below and be careful for handling. Correct handling:



As above picture, please handle with anti-static gloves around LCM edges.


Incorrect handling:

Please don't stack LCM.

Please don't stretch interface of output, such as FPC cable.

Please don't operate with sharp stick such as pens.

Please don't touch IC directly.

Please don't hold the surface of panel.

Please don't hold the surface of IC.

Storage Precautions

When storing the LCD modules, the following precaution is necessary.

(1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for the dessicant.

(2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0° C and 35° C, and keep the relative humidity between 40%RH and 60%RH.

(3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the anti-static electricity container in which they were shipped.

Others

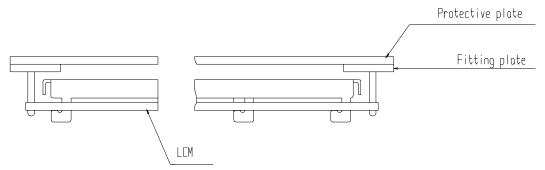
Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.

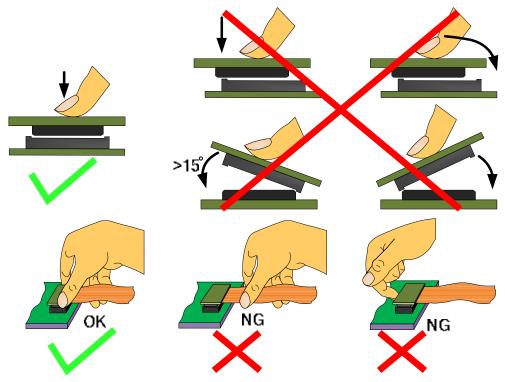
-Terminal electrode sections.



USING LCD MODULES

Installing LCD Modules

The hole in the printed circuit board is used to fix LCM as shown in the picture below. Attend to the following items when installing the LCM.


(1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.

(2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be ± 0.1 mm.

Precaution for assemble the module with BTB connector:

Please note the position of the male and female connector position, don't assemble or assemble like the method which the following picture shows

Precaution for soldering the LCM

	Manual soldering	Machine drag soldering	Machine press soldering
No RoHS	290°C ~350°C.	330°C ~350°C.	300°C ~330°C.
product	Time : 3-5S.	Speed : 4-8 mm/s.	Time : 3-6S.
product			Press: 0.8~1.2Mpa
RoHS	340°C ~370°C.	350°C ~370°C.	330°C ~360°C.
product	Time : 3-5S.	Time : 4-8 mm/s.	Time : 3-6S.
product			Press: 0.8~1.2Mpa

Ver 1.2

(1) If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage due to flux spatters.

(2) When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.

(3) When remove the electroluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.

Precautions for Operation

(1) Viewing angle varies with the change of liquid crystal driving voltage (VLCD). Adjust VLCD to show the best contrast.

(2) It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life. An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.

(3) Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, Which will come back in the specified operating temperature.

(4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.

(5) A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit. Usage under the maximum operating temperature, 50%RH or less is required.

(6) Input logic voltage before apply analog high voltage such as LCD driving voltage when power on. Remove analog high voltage before logic voltage when power off the module. Input each signal after the positive/negative voltage becomes stable.

(7) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.

Safety

(1) It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.

(2) If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

Limited Warranty

Unless agreed betweenMulti-Inno and customer,Multi-Inno will replace or repair any of its LCD modules which are found to be functionally defective when inspected in accordance with Multi-Inno LCD acceptance standards (copies available upon request) for a period of one year from date of production. Cosmetic/visual defects must be returned to Multi-Inno within 90 days of shipment. Confirmation of such date shall be based on data code on product. The warranty liability ofMulti-Inno limited to repair and/or replacement on the terms set forth above. Multi-Inno will not be responsible for any subsequent or consequential events.

Return LCM under warranty

No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are :

- Broken LCD glass.
- PCB eyelet is damaged or modified.
- PCB conductors damaged.
- Circuit modified in any way, including addition of components.
- PCB tampered with by grinding, engraving or painting varnish.
- Soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet, conductors and terminals.

PRIOR CONSULT MATTER

- 1. For Multi-Inno standard products, we keep the right to change material, process ... for improving the product property without notice on our customer.
- ⁽²⁾For OEM products, if any change needed which may affect the product property, we will consult with our customer in advance.
- 2. If you have special requirement about reliability condition, please let us know before you start the test on our samples.