GPS Active Antenna With GPRS Measurement Report

Summary:

This report is to account for the measurement setup and results of 40x23mm and 50 mm height GPS active antenna combined with GPRS antenna measurement.

- 1. The measurement accounts return loss and smith chart for the antenna.
- 2. The passive antenna gain was account and reported.
- 2. The GPS active gain with the 28 dBm GSM 1710 MHz noise signal was measured and reported.

I. Measurement Setup:

A. Reflection Coefficient Measurement:

- (a) Instrument: Network Analyzer (Agilent E5071A).
- (b) Setup:
 - (1) Calibrate the Network Analyzer by two port calibration using O.S.L .calibration kits .
 - (2) Place the antenna module on the specified ground plane (Fig 2.).
 - (3) Connect the antenna under test to the Network Analyzer.
 - (4) Measure the S11 (reflection coefficient), S22 (reflection coefficient), and S21 (Antenna isolation) shown in Fig. 1.

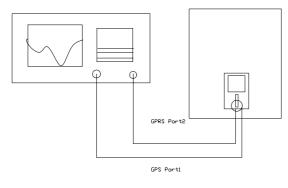
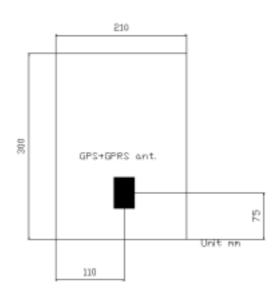
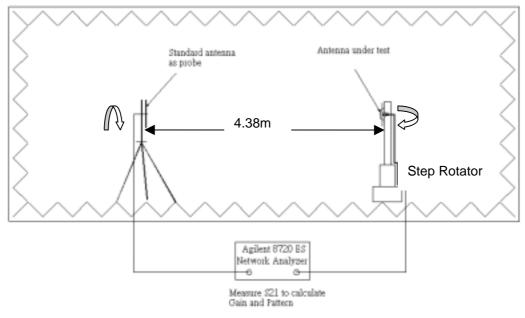


Fig 1. The reflection coefficient and antenna isolation measurement setup

DESIGNED BY : H.W. Tseng/David Tsai	APPROVED BY : D.S.M.	INPAQ TECHNOLOGY CO., Ltd	
TITLE : GPS Active Antenna With GPRS Measurement Report		DOCUMENT NO. GPS01F-20030630	PAGE REV.
		Date: 2003-06-30	AO
			0




Fig 2. The setup position for the antenna on the ground planes

B. Pattern Measurement:

(a) Instruments: Anechoic Chamber, Network Analyzer, Standard Gain Antenna.

(b) Chamber description:

(1) The INPAQ's anechoic chamber is a far-field measurement system with size of 8m*4m*3.5m. The quiet zone region is 20cm x 20cm x 20cm.

(2) Fig. 2 shows the interior components of Anechoic chamber and the connection to the network analyzer. The distance between standard antenna as probe and antenna under test (AUT) is 4.38m. The antenna under test is

DESIGNED BY : H.W. Tseng/ David Tsai	APPROVED BY : D.S.M.	B	INPAQ T	ECHNOLOGY	CO.,	, Ltd			
TITLE : GPS Active Antenna With GPRS		DOCUMENT NO.	GPS01F	-20030630				PAGE	REV.
Measureme		Date: 2003-	06-30					AO	
					AGE	2	0F	9	

fixed on a step rotator. We can control the rotating angle for accurate or rough measurement.

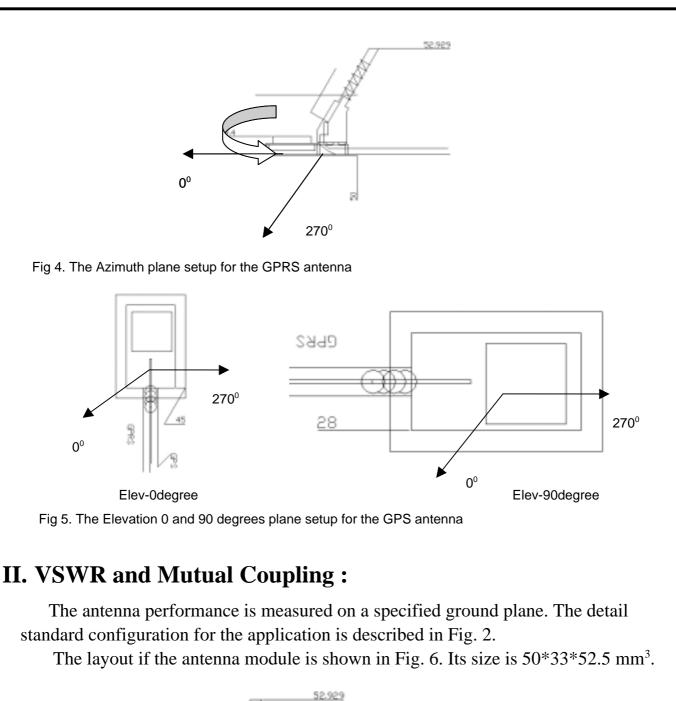
- (3) The probing antenna is the TDK 900MHz~18 GHz module (9120D horn antenna).
- (4) While we measure the radiation patterns by rotating AUT with 360 degrees and repeat again by replacing the AUT with the standard gain antenna under test, we compare both data and using a formula to obtain the gain of AUT. The standard gain antenna is a gain horn (BBHA 9120 LFA 700MHz~6GHZ).

$$G_{AUT} = G_{s\tan d} + P_{AUT} - P_{s\tan d}$$

 G_{AUT} : Gain of AUT G_{stand} : Gain of S tan dard Gain Antenna P_{AUT} : Measured Power of AUT P_{stand} : Measured Power of S tan dard Gain Antenna

- (5) We use the 50 ohm load to terminate one antenna while the another is under measurement.
- (6) The planes defined in Fig. 4. is the GPRS antenna Azimuth planes in free space
- (7) The planes defined in Fig. 5. is the GPS antenna Elevation 0 degree and 90 degree planes in free space.
- (8) The vertical or horizontal polarization's power is measured by rotating the antenna probe to 0 degree or to 90 degree shown in Fig. 3, respectively. While we combine both vertical and horizontal power, we obtain total power.
- (9) From the patterns we can verify whether the performance of the antenna is good or not.

← E →


Rotate 90°

No rotate (a) Antenna Probe at 0° as a Vertical Polarization.

(b)Antenna Probe at 90° as a Horizontal Polarization.

Fig. 3. The definition of vertical and horizontal polarization.

DESIGNED BY : H.W. Tseng/ David Tsai	APPROVED BY : D.S.M.	G	INPAQ	TEC	CHNOLOG	GY CO.	, Lto	ł		
TITLE : GPS Active Antenna With GPRS		DOCUMENT NO	. GPSO	1F-2	2003063	80			PAGE	REV.
Measureme		Date: 2003	-06-30						A	0
						PAGE	3	OF	9	

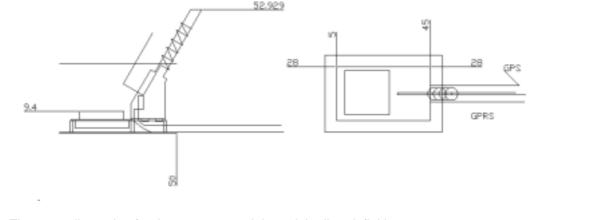
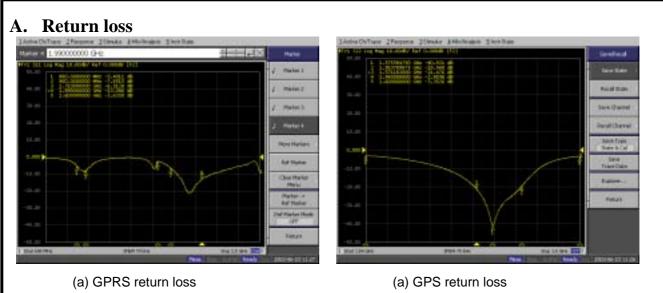



Fig 6. The outer dimension for the antenna module and the line definition.

DESIGNED BY : H.W. Tseng/ David Tsai	APPROVED BY : D.S.M.	B	INPAQ TECHNOLOGY	Υ CO.	, Ltd			
TITLE : GPS Active Antenna With GPRS		DOCUMENT NO. GPS01F-20030630 PAGE						REV.
Measureme		Date: 2003	-06-30				A)
				PAGE	4	0F	9	

B. Mutual coupling

The mutual coupling for the two antennas is as follow. We can see that the largest coupling is –16 dB in 1710MHz. We see one filter after the GPS antenna and the factor is –40 dB in 1710MHz. The total loss to the LNA input is –46 dB. If the DCS signal 28 dBm from the GPRS antenna the power become –24dBm to the LNA. This will let the LAN to reaches it's Conner conversion compression point and compress the signal receiving for the GPS.

We can see the measurement in IV to check the gain.

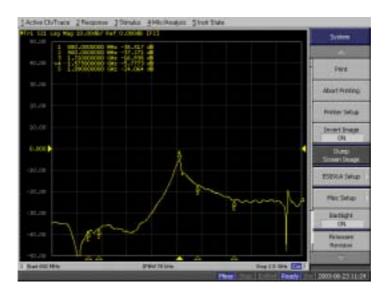
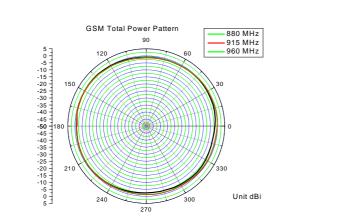
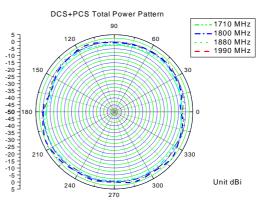


Fig. 8. The mutual coupling for the two antennas,

DESIGNED BY : H.W. Tseng/David Tsai	APPROVED BY : D.S.M.	INPAQ TECHNOLOGY CO., Ltd	
TITLE : GPS Active A	ntenna With GPRS	DOCUMENT NO. GPS01F-20030630	PAGE REV.
Measureme		Date: 2003-06-30	AO
		PAGE 5 OF	9

III. Gain and Radiation Pattern:

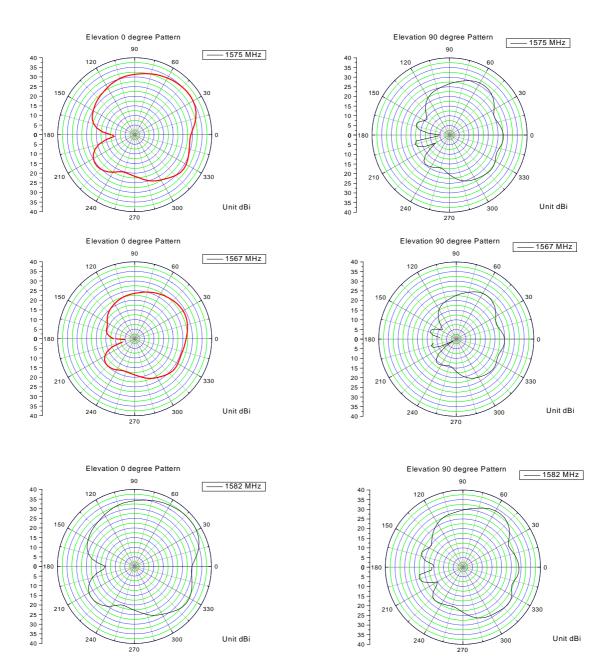

A: GPRS in free space: Antenna Gain for GPRS in Azimuth.


Unit dBi		0 degre	e		90 degre	e		Total pov	wer
MHz	Max.	Min.	Average	Max.	Min.	Average	Max.	Min.	Average
				(GSM				
880	-0.30	-3.21	-1.76	-4.95	-33.44	-9.36	0.10	-2.51	-1.07
915	-0.14	-1.95	-1.14	-6.36	-31.66	-10.65	0.17	-1.37	-0.68
960	0.06	-1.68	-1.05	-6.35	-29.21	-11.12	0.17	-1.41	-0.64
				DCS	S & PCS				
1710	-0.64	-4.59	-1.67	-9.28	-30.01	-13.33	-0.33	-4.38	-1.39
1800	0.61	-3.43	-0.66	-6.79	-27.21	-12.46	0.90	-3.25	-0.38
1880	2.27	-2.66	0.36	-4.23	-24.18	-10.04	2.72	-1.95	0.73
1990	1.95	-4.39	-0.28	-3.47	-25.29	-9.79	2.39	-3.60	0.18

B: GPS Active Antenna Gain in free space Antenna in Elevation 0 and 90 degrees

Unit dBic		0 degree			90 degre	e
MHz	Max.	Min.	Average	Max.	Min.	Average
1567	28.98	-8.96	22.85	27.50	-8.18	20.57
1575	35.21	10.71	28.57	31.27	4.50	24.20
1582	37.61	14.86	30.04	33.70	14.84	26.82

C: GPRS Pattern: GPRS pattern in Azimuth plane



D: GPS Pattern

DESIGNED BY : H.W. Tseng/David Tsai	APPROVED BY : D.S.M.	INPAQ TECHNOLOGY CO., Ltd	
TITLE : GPS Active Antenna With GPRS		DOCUMENT NO. GPS01F-20030630	PAGE REV.
Measureme		Date: 2003-06-30	AO
		PAGE 6 OF	9

IV. The Coupling Effect for The Two Antennas:

The GSM power will coupling vie the GPRS antenna to the GPS LNA. The power of the GSM will compress the gain for the LNA.

Using the R&S SMIQ to generate GSM signal in 1710 MHz we measure the Active GPS gain. We see no gain degrading for the GPS LNA. The LNA have little spurious signal around the band and those come from the unstable in the upper and lower band far away from the scope we can see. The noise from the PCB coupling is

DESIGNED BY:H.W. Tseng/David Tsai	APPROVED BY : D.S.M.	в	INPAQ	TECHNOL	.0GY CO.	, Ltd	l		
TITLE : GPS Active Antenna With GPRS		DOCUMENT NO.	GPS01	IF-20030	630			PAGE	REV.
Measureme		Date: 2003-	06-30					AC)
					PAGE	7	0F	9	

also the problems for this.

V. Summary for measurement and Specification for the Module:

- A. The pattern for GPRS is omi-directionl and is good for the application.
- B. The GPS Pattern Max. Point till 30 degree and it's comes form the ground plane and the unbalance pattern for the GPS.
- C. The GPS LNA can stand the GSM output power less than 28 dBm in 1710 MHz.

Parameter	Electrical Specifications
Frequency Range	1573.42~1577.42 MHz
Patch Antenna Polarization	RHCP
VSWR (50ohm)	< 2.0
Elevation Patch Antenna Axial	< 3
Ratio at =0 degree (dBic)	
Elevation maximum patch Antenna	3 dBic
Gain or directive (dBic)	
Elevation Pattern	Hemispherical
LNA DC Voltage	3.3~5V
LNA DC Current	25 mA Max.
LNA Amplifier Gain (dB)	3.3 V: 23
	5.0 V: 25
Noise Figure including filter and	2.5 Typical
LNA @ ambient temperature	
LNA input near 1575 MHz P1dB	< -10 dBm
Isolation between the GPS patch	-45dB Min.
including first stage filter and the	
GPRS antenna @1710~1990	
MHz and @ 915~824 MHz	
Testing Condition	1. The patch Antenna gain is the gain at the
	feed point of the antenna; do not include
	the cable and the connector.
	2. The measurement shall be taken on the 30
	cm diameter ground plane.

Table 1: The GPS Active antenna specification

Parameter	Electrical Specifications
Frequency Range	880~960 MHz (GSM), 1710~1880MHz (DCS), 1850~1990 MHz (PCS)
VSWR (50 Ohm)	< 2.5 @1710~1990; < 3.5 @ 880~960
Polarization	Vertical
Peak Gain (Total power Gain)	~2dBi Typ.
Azimuth average typical gain (dBi)	~-1dBi

DESIGNED BY:H.W. Tseng/David Tsai	APPROVED BY:D.S.M.	в	INPAQ TECHNOLOGY CO., Ltd	
TITLE : GPS Active Antenna With GPRS		DOCUMENT NO	. GPS01F-20030630	PAGE REV.
		Date: 2003-	06-30	AO

9

Azimuth Pattern	Omni-directional
Power Handling (W)	>10
Testing conditions	 All the measurement shall be taken on 30 cm diameter ground plane The antenna gain is defined at the antenna feed point, not including the cable loss.

Table 2. The GPRS antenna specification.

DESIGNED BY:H.W. Tseng/David Tsai	APPROVED BY : D.S.M.	в	INPAQ TECHNOLOG	Y CO.	, Ltd		
TITLE : GPS Active Antenna With GPRS		DOCUMENT NO.	. GPS01F-2003063	0			PAGE REV.
Measurement Report		Date: 2003-	06-30				AO
				PAGE	9	OF	9