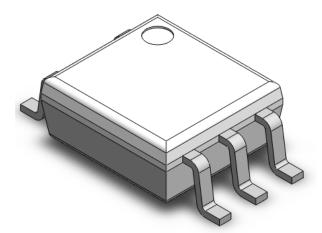
# **CTM131 Series**

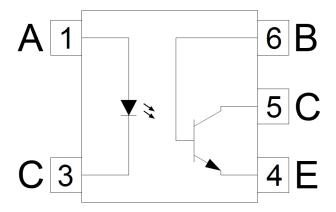
DC Input 5-Pin Mini-Flat Phototransistor Optocoupler

#### Features

- High isolation 3750 V<sub>RMS</sub>
- Multiple CTR selection available
- DC input with transistor output
- Creepage distance ≥5mm
- >0.4
- Operating temperature range 55 °C to 110 °C
- Halogen free compliance

## Description


These series of general purpose optocoupler consists of a photo transistor optically coupled to a gallium arsenide Infrared-emitting diode in a 5-lead Mini-Flat package.


## Applications

- DC-DC Converters
- Programmable controllers
- Telecommunication equipment
- Hybrid substrates that require high density
  mounting

**Package Outline** 

## Schematic







DC Input 5-Pin Mini-Flat Phototransistor Optocoupler

# Absolute Maximum Rating at 25°C

| Symbol                | Parameters                               | Ratings    | Units | Notes |
|-----------------------|------------------------------------------|------------|-------|-------|
| Viso                  | Isolation voltage                        | 3750       | Vrms  |       |
| T <sub>OPR</sub>      | Operating temperature                    | -55 ~ +110 | °C    |       |
| Tstg                  | Storage temperature                      | -55 ~ +150 | °C    |       |
| TSOL                  | Soldering temperature                    | 260        | °C    |       |
| Ртот                  | Total power dissipation                  | 200        | mW    |       |
| Emitter               |                                          |            |       |       |
| l <sub>F</sub>        | Forward current                          | 50         | mA    |       |
| I <sub>F(TRANS)</sub> | Peak transient current (≤1µs P.W,300pps) | 1          | А     |       |
| VR                    | Reverse voltage                          | 6          | V     |       |
| PD                    | Power dissipation                        | 70         | mW    |       |
| Detector              |                                          |            |       |       |
| Pc                    | Power dissipation                        | 150        | mW    |       |
| B <sub>VCEO</sub>     | Collector-Emitter Breakdown Voltage      | 80         | V     |       |
| BVECO                 | Emitter-Collector Breakdown Voltage      | 7          | V     |       |
| Вусво                 | Collector-Base Breakdown                 | 80         | V     |       |
| B <sub>VEBO</sub>     | Emitter-Base Breakdown                   | 7          | V     |       |
| lc                    | Collector Current                        | 50         | mA    |       |



### **Electrical Characteristics** $T_A = 25^{\circ}C$ (unless otherwise specified)

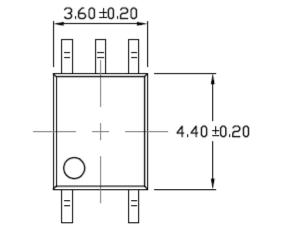
#### **Emitter Characteristics**

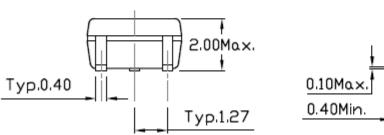
| Symbol         | Parameters        | Test Conditions | Min | Тур  | Max | Units | Notes |
|----------------|-------------------|-----------------|-----|------|-----|-------|-------|
| VF             | Forward voltage   | IF=10mA         | -   | 1.24 | 1.4 | V     |       |
| I <sub>R</sub> | Reverse Current   | $V_R = 6V$      | -   | -    | 5   | μA    |       |
| CIN            | Input Capacitance | f= 1MHz         | -   | 10   | 250 | pF    |       |

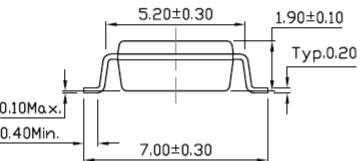
#### **Detector Characteristics**

| Symbol            | Parameters                     | Test Conditions                                                  | Min | Тур | Max | Units | Notes |
|-------------------|--------------------------------|------------------------------------------------------------------|-----|-----|-----|-------|-------|
| BVCEO             | Collector-Emitter Breakdown    | I <sub>C</sub> = 500μA                                           | 80  | -   | -   | V     |       |
| B <sub>VECO</sub> | Emitter-Collector Breakdown    | I <sub>E</sub> = 100μA                                           | 7   | -   | -   | V     |       |
| Вусво             | Collector-Base Breakdown       | I <sub>CB</sub> = 0.1mA                                          | 80  |     |     | V     |       |
| BVEBO             | Emitter-Base Breakdown         | I <sub>EB</sub> = 0.1mA                                          | 7   |     |     | V     |       |
| Iceo              | Collector-Emitter Dark Current | V <sub>CE</sub> = 48V, I <sub>F</sub> =0mA                       | -   | -   | 100 | nA    |       |
|                   |                                | V <sub>CE</sub> = 48V, I <sub>F</sub> =0mA, T <sub>A</sub> =85°C |     |     | 50  | μA    |       |

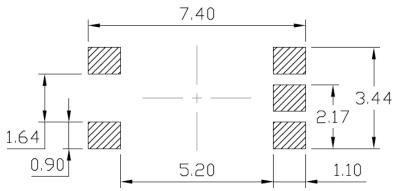
#### **Transfer Characteristics**


| Symbol               | Parameters                   |         | Test Conditions                            | Min                | Тур | Max | Units | Notes |
|----------------------|------------------------------|---------|--------------------------------------------|--------------------|-----|-----|-------|-------|
|                      | Current Transfer<br>Ratio    | CTM131  | I <sub>F</sub> = 5mA, V <sub>CE</sub> = 5V | 50                 | -   | 600 |       |       |
|                      |                              | CTM131A |                                            | 50                 | -   | 150 |       |       |
| CTR                  |                              | CTM131B |                                            | 100                | -   | 300 | %     |       |
|                      |                              | CTM131C |                                            | 100                | -   | 600 |       |       |
|                      |                              | CTM131D |                                            | 200                | -   | 600 |       |       |
| V                    | Collector-Emitter Saturation |         | IF= 8mA, Ic= 2.4mA                         | -                  | -   | 0.4 | V     |       |
| V <sub>CE(SAT)</sub> | Voltage                      |         | IF= 1mA, Ic= 0.2mA                         |                    |     | 0.4 |       |       |
| Rio                  | Isolation Resistance         |         | V <sub>IO</sub> = 500V <sub>DC</sub>       | 5x10 <sup>10</sup> | -   | -   | Ω     |       |
| Cio                  | Isolation Capacitance        |         | f= 1MHz                                    | -                  | 0.5 | 1   | pF    |       |


### Switching Characteristics


| Symbol         | Parameters | Test Conditions                  | Min | Тур | Max | Units | Notes |
|----------------|------------|----------------------------------|-----|-----|-----|-------|-------|
| tr             | Rise Time  | Ic= 2mA, Vcε= 2V, RL= 100Ω       | -   | 6   | 18  |       |       |
| t <sub>f</sub> | Fall Time  | 1C = 2111A, VCE = 2V, RL = 10002 | -   | 8   | 18  | μs    |       |




### Package Dimension Dimensions in mm unless otherwise stated







### Recommended Solder Mask Dimensions in mm unless otherwise stated





Note:

CT

131

R

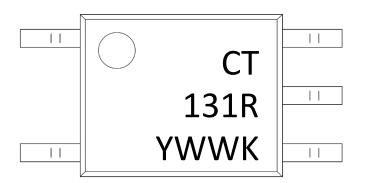
Υ

Κ

WW

: Denotes "CT Micro"

: Manufacturing Code


: Product Number

: CTR Rank

: Fiscal Year

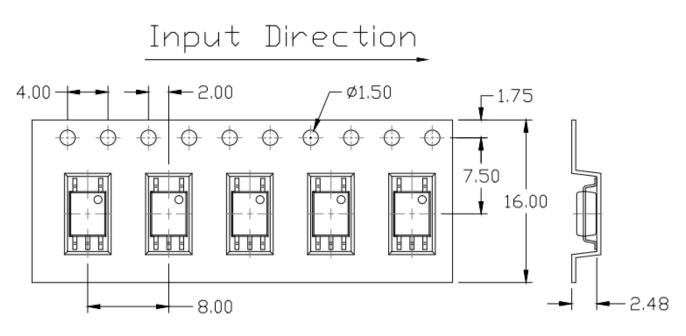
: Work Week

## Marking Information



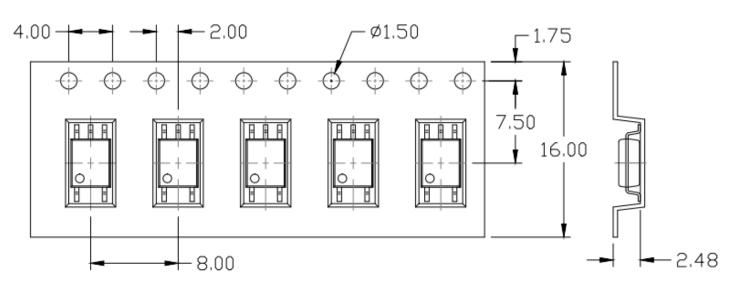
## **Ordering Information**

# CTM131R(Z)


- CT = Denotes "CT Micro"
- M131 = Product Number
- R = CTR Rank (A,B,C,D or None)
- Z = Tape and reel option (T1, T2)

| Option | Description                                        | Quantity        |
|--------|----------------------------------------------------|-----------------|
| T1     | Surface Mount Lead Forming – With Option 1 Tapping | 3000 Units/Reel |
| T2     | Surface Mount Lead Forming – With Option 2 Tapping | 3000 Units/Reel |

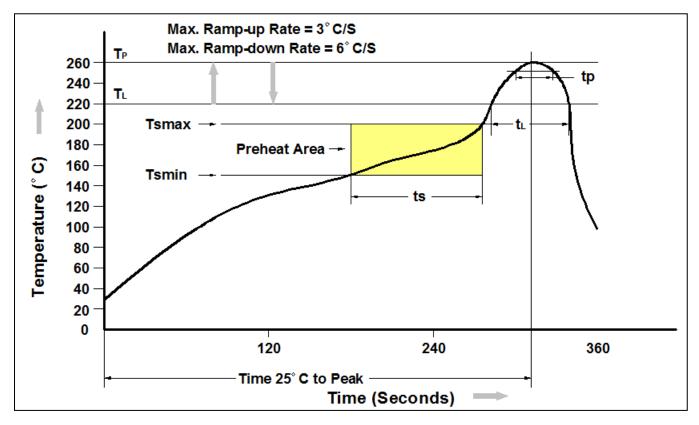



Carrier Tape Specifications Dimensions in mm unless otherwise stated

Option T1



**Option T2** 








DC Input 5-Pin Mini-Flat Phototransistor Optocoupler

### **Reflow Profile**



| Profile Feature                                           | Pb-Free Assembly Profile |
|-----------------------------------------------------------|--------------------------|
| Temperature Min. (Tsmin)                                  | 150°C                    |
| Temperature Max. (Tsmax)                                  | 200°C                    |
| Time (ts) from (Tsmin to Tsmax)                           | 60-120 seconds           |
| Ramp-up Rate (t∟ to t <sub>P</sub> )                      | 3°C/second max.          |
| Liquidous Temperature (TL)                                | 217°C                    |
| Time (t <sub>L</sub> ) Maintained Above (T <sub>L</sub> ) | 60 – 150 seconds         |
| Peak Body Package Temperature                             | 260°C +0°C / -5°C        |
| Time (t <sub>P</sub> ) within 5°C of 260°C                | 30 seconds               |
| Ramp-down Rate $(T_P \text{ to } T_L)$                    | 6°C/second max           |
| Time 25°C to Peak Temperature                             | 8 minutes max.           |



# DC Input 5-Pin Mini-Flat Phototransistor Optocoupler

#### DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

DISCOLORATION MIGHT OCCUR ON THE PACKAGE SURFACE AFTER SOLDERING, REFLOW OR LONG TERM USE. THIS DOES NOT IMPACT THE PRODUCT PERFORMANCE NOR THE PRODUCT RELIABILITY.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.