

CT426

XtremeSense® TMR Ultra-Low Noise, <1% Total Error Current Sensor

Features

- Integrated Contact Current Sensing for Low to Medium Current Ranges:
 - o 0 A to +20 A
 - -20 A to +20 A
 - o 0 A to +30 A
 - \circ $\,$ -30 A to +30 A
- Integrated Current Carrying Conductor (CCC)
- Linear Analog Output Voltage
- Total Error Output $\leq \pm 1.0\%$ FS
- 1 MHz Bandwidth
- Response Time: ~0.30 µs
- Supply Voltage: 3.0 V to 3.6 V
- Low Noise: 10 mA_{RMS} to 12 mA_{RMS} @ f_{BW} = 100 kHz
- Filter Function to Reduce Noise on Output Pin
- Immunity to Common Mode Fields: <5.0 mA/mT
- 8-Lead SOIC Package

Applications

- Solar/Power Inverters
- UPS, SMPS and Telecom Power Supplies
- Battery Management Systems
- Motor Control
- White Goods
- Consumer and Enterprise Electronics
- Over-Current Fault Protection

Product Description

The CT426 is a high bandwidth and ultra-low noise integrated contact current sensor that uses Crocus Technology's patented XtremeSense® TMR technology to enable high accuracy current measurements for many consumer, enterprise, and industrial applications. It supports four (4) current ranges where the integrated current carrying conductor (CCC) will handle up to 30 A of current and generates a current measurement as a linear analog output voltage. It achieves a total output error of less than $\pm 1.0\%$ full-scale (FS).

It has about a 0.30 μ s output response time while the current consumption is about 6.0 mA and is immune to common mode fields. The CT426 has a filter function to reduce the noise on the output pin.

The CT426 is offered in an industry standard 8-lead SOIC package that is "green" and RoHS compliant.

Part Ordering Information

Part Number	Operating Temperature Range	Current Range	Package	Packing Method
CT426-ESN820DR	-40°C to +85°C	0 A to +20 A		
CT426-HSN820DR	-40°C to +125°C	0 A to +20 A		
CT426-ESN820MR	-40°C to +85°C	-20 A to +20 A		
CT426-HSN820MR	-40°C to +125°C	-20 A 10 +20 A	8-lead SOIC	
CT426-ESN830DR	-40°C to +85°C	0 A to +30 A	4.89 x 6.00 x 1.47 mm	Tape & Reel
CT426-HSN830DR	-40°C to +125°C	0 A 10 +30 A		
CT426-ESN830MR	-40°C to +85°C	20 A to 120 A		
CT426-HSN830MR	-40°C to +125°C			

Evaluation Board Ordering Information

Evaluation Board	Ordering Information		
Part Number	Current Range	Operating Temperature Range	
CTD426-20DC	0 A to +20 A		
CTD426-20AC	-20 A to +20 A	-40°C to +85°C	
CTD426-30DC	0 A to +30 A	-40 C 10 +65 C	
CTD426-30AC	-30 A to +30 A		

	$\langle \langle \rangle$	
	7	
\mathbf{Q}		

Block Diagram

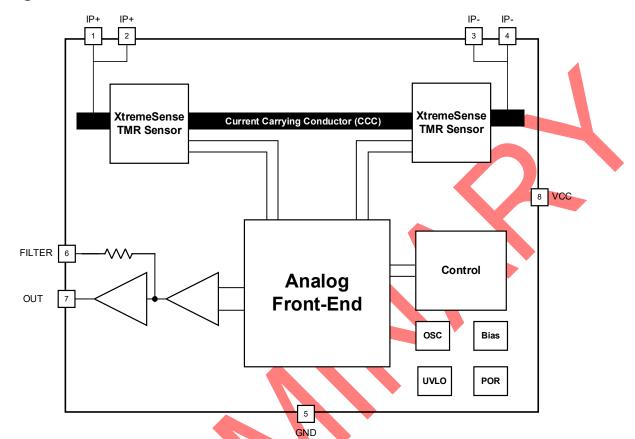
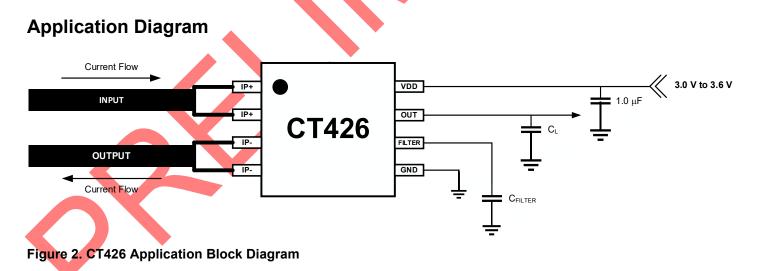



Figure 1. CT426 Functional Block Diagram for 8-lead SOIC Package

Table 1. Recommended External Components

Component	Description	Vendor & Part Number	Parameter	Min.	Тур.	Max.	Unit
Свур	1.0 μF, X5R or Better	Murata GRM155C81A105KA12	С		1.0		μF

CT426

CT426 Pin Configuration

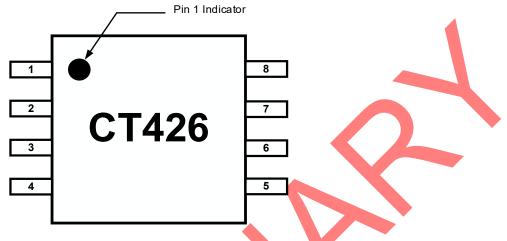


Figure 3. CT426 Pin-out Diagram for 8-lead SOIC Package (Top-Down View)

Pin Definition

Pin #	Pin Name	Pin Description
1	IP+	Input primary conductor (positive).
2		
3	- IP-	Output primary conductor (negative).
4	11 -	Output primary conductor (negative).
5	GND	Ground.
6	FILTER	Filter pin to improve noise performance by connecting an external capacitor to set the cut-off frequency.
7	OUT	Analog output voltage that represents the measured current.
8	VDD	Supply voltage.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the CT426 and may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit	
Vcc	Supply Voltage		-0.3	6.0	V	
VI/O	Analog Input/Output Pin	s Maximum Voltage	-0.3	Vcc + 0.3*	V	
ICCC(MAX)	Current Carrying Condu	ctor, $T_A = +25^{\circ}C$		50	A	
	Electrostatic Discharge	Human Body Model (HBM) per JESD22-A114	±2.0			
ESD	Protection Level	Charged Device Model (CDM) per JESD22-C101	±0.5		- kV	
TJ	Junction Temperature		-40	+150	°C	
Tstg	Storage Temperature		-65	+155	°C	
TL	Lead Soldering Tempera	ature, 10 Seconds		+260	°C	
The lower of \	$l_{00} + 0.3 V \text{ or } 6.0 V$					

*The lower of V_{CC} + 0.3 V or 6.0 V.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual operation of the CT426. Recommended operating conditions are specified to ensure optimal performance to the specifications. Crocus Technology does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter		Min.	Тур.	Max.	Unit
Vcc	Supply Voltage Range		3.0	3.3	3.6	V
Vout	OUT Voltage Range		0		Vcc	V
lout	OUT Current				±1.0	mA
TA	On exetting Archieut Tang eveture	Industrial	-40	+25	+85	°C
IA	Operating Ambient Temperature	Extended Industrial	-40	+25	+125	C

Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout and is determined in accordance to JEDEC standard JESD51 for a four (4) layer 2s2p FR-4 printed circuit board (PCB) with 2 oz. of copper (Cu). Special attention must be paid not to exceed junction temperature $T_{J(MAX)}$ at a given ambient temperature T_A .

Symbol	Parameter	Min.	Тур.	Max.	Unit
θJA_SOIC	Junction-to-Ambient Thermal Resistance, SOIC-8		151	176	°C/W
θJC_SOIC	Junction-to-Case Thermal Resistance, SOIC-8		102	128	°C/W

Isolation Specifications

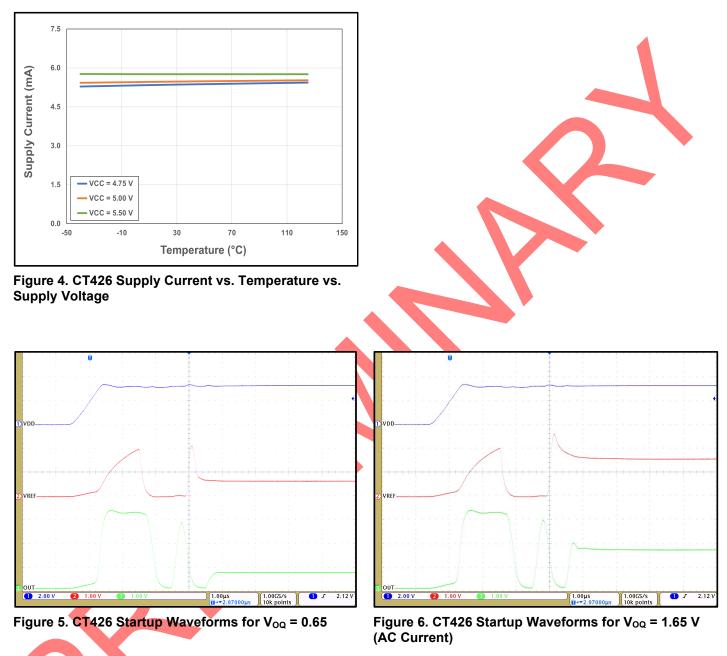
Symbol	Parameter	Conditions	Rating	Unit
V _{ISO} Rated Isolation Voltage		Agency Tested per IEC 62368* for 60 seconds. Production Tested at V_{ISO} for 1 second per IEC 62368.	3.0	kV _{RMS}
		Agency Tested per UL1577 for 60 seconds. Production Tested at $V_{\rm ISO}$ for 1 second per UL1577.	3.0	kV _{RMS}
Vwork_iso	Working Voltage for Basic Isolation	Tested per per IEC 62368*	991 701	Vрк Vrms
Vwork_ri	Working Voltage for Reinforced Isolation	Tested per IEC 62368*	487	Vрк
d _{CR}	Creepage Distance	Minimum Distance Along Package Body from IP Pins to I/O Pins	4.96	V _{RMS} mm
dcL	Clearance Distance	Minimum Distance Through Air from IP Pins to I/O Pins	4.63	mm
diso	Distance Through Isolation	Minimum Internal Distance Through Isolation	40	μm
СТІ	Comparative Tracking Index	Material Group II	400 to 599	V

*IEC 62368 is the succeeding standard to IEC 60950-1 (Edition 2) for isolation testing specifications and as such it will be compliant to the latter standard.

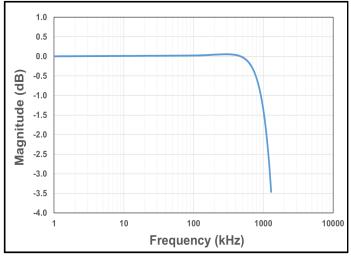
Electrical Specifications

General Parameters

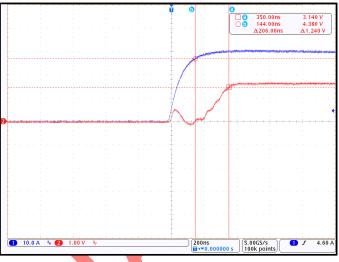
Unless otherwise specified: $V_{CC} = 3.0$ V to 3.6 V, $T_A = -40^{\circ}$ C to $+125^{\circ}$ C, $C_{BYP} = 1.0$ µF. Typical values are $V_{CC} = 3.3$ V and $T_A = +25^{\circ}$ C.

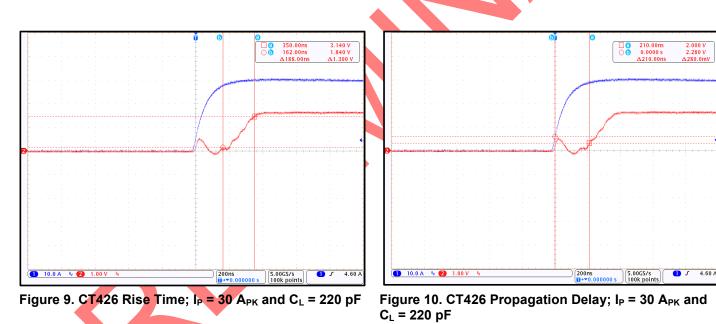

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
Power Sup	Power Supplies								
Icc	Supply Current	f _{BW} = 1 MHz No load, I _P = 0 A		6.0	9.0	mA			
l _{оит}	OUT Maximum Drive Capability ⁽¹⁾	OUT covers 10% to 90% of V_{CC} span.	-1.0		+1.0	mA			
CL_OUT	OUT Capacitive Load ⁽¹⁾				100	pF			
RL_OUT	OUT Resistive Load (1)			100		kΩ			
RFILTER	Internal Filter Resistance ⁽¹⁾			15		kΩ			
Rip	Primary Conductor Resistance			0.5		mΩ			
Analog Out	tput (OUT)								
Vout	OUT Voltage Linear Range	$V_{SIG_AC} = \pm 1.00 V$ $V_{SIG_DC} = \pm 2.00 V$	0.65		2.65	V			
V _{OUT_SAT}	Output High Saturation Voltage	V _{OUT} , T _A = +25°C,	V _{CC} - 0.30	V _{CC} - 0.25		V			
CMFR	Common Mode Field Rejection			5.0		mA/mT			

CT426


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
TCS	Temperature Coefficient of Sensitivity	Absolute Value $T_A = -40^{\circ}C$ to +125°C		10	40	ppm/°C
тсо	Temperature Coefficient of Offset ⁽¹⁾	Absolute Value $T_A = -40^{\circ}C$ to +125°C		0.16		% FS
Timings						
t _{ON}	Power-On Time (1)	$V_{CC} \geq 2.50 \ V$		100	200	μs
t _{RISE}	Rise Time ⁽¹⁾	$I_{P} = I_{RANGE(MAX)},$		0.20		μs
tresponse	Response Time ⁽¹⁾	T _A = +25°C,		0.30		μs
tDELAY	Propagation Delay ⁽¹⁾	C∟ = 220 pF		0.25		μs
Protection						
M		Rising Vcc		2.50		V
Vuvlo	Under-Voltage Lockout	Falling Vcc		2.45		V
Vuv_Hys	UVLO Hysteresis			50		mV

(1) Guaranteed by design and characterization; not tested in production.


Electrical Characteristics


Electrical Characteristics (continued)

CT426-xSN820DR: 0 A to +20 A

Unless otherwise specified: V_{CC} = 3.0 V to 3.6 V, T_A = -40°C to +125°C, C_{BYP} = 1.0 µF. Typical values are V_{CC} = 3.3 V and T_A = +25°C.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	Current Range		0		+20	А
Voq	Voltage Output Quiescent	T _A = +25°C, I _P = 0 A	0.645	0.650	0.655	V
S	Sensitivity	$I_{RANGE(MIN)} < I_P < I_{RANGE(MAX)}$		100		mV/A
Eout	Total Output Error	$I_{P} = I_{P(MAX)}$		±1.0		% FS
Elin	Non-Linearity Error	I _P = 0 A to +20 A		±0.3		% FS
f _{BW}	Bandwidth ⁽¹⁾	Small Signal = -3 dB		1.0		MHz
e _N	Noise ⁽¹⁾	T _A = +25°C, f _{BW} = 100 kHz		10		mA _{RMS}
Lifetime D	rift					
ETOT_DRIFT	Total Output Error Lifetime Drift ⁽¹⁾	$I_{P} = I_{P(MAX)}$		±1.0		% FS

(1) Guaranteed by design and characterization; not tested in production.

Electrical Characteristics for CT426-xSN820DR

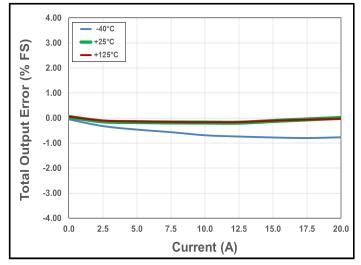
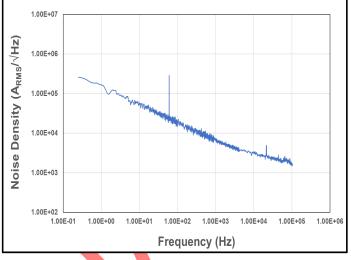



Figure 11. Total Output Error vs. Current vs. Temperature

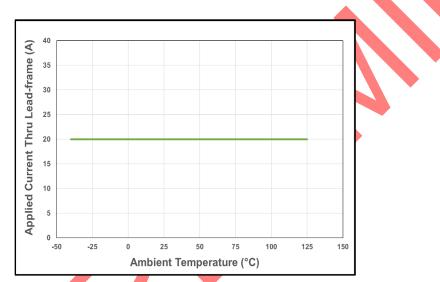
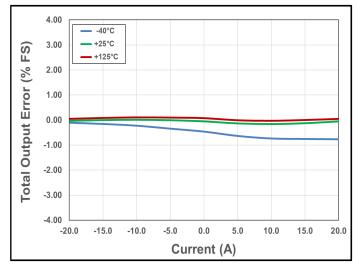
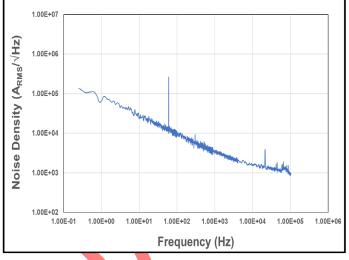


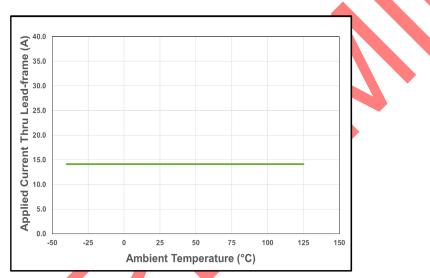
Figure 13. CT426 Current De-rating Curve for 20 A_{DC}

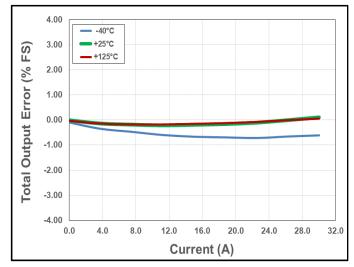

CT426-xSN820MR: -20 A to +20 A

Unless otherwise specified: V_{CC} = 3.0 V to 3.6 V, T_A = -40°C to +125°C, C_{BYP} = 1.0 µF. Typical values are V_{CC} = 3.3 V and T_A = +25°C.

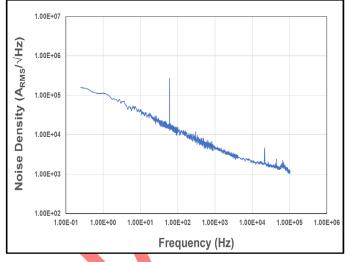

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
IRANGE	Current Range		-20		+20	А
Voq	Voltage Output Quiescent	T _A = +25°C, I _P = 0 A	1.645	1.650	1.655	V
S	Sensitivity	$I_{\text{RANGE}(\text{MIN})} < I_{\text{P}} < I_{\text{RANGE}(\text{MAX})}$		50		mV/A
Eout	Total Output Error	$I_{P} = I_{P(MAX)}$		±1.0		% FS
Elin	Non-Linearity Error	I _P = -20 A to +20 A		±0.3		% FS
f _{BW}	Bandwidth ⁽¹⁾	Small Signal = -3 dB		1.0		MHz
e _N	Noise ⁽¹⁾	T _A = +25°C, f _{BW} = 100 kHz		11		mA _{RMS}
Lifetime Drift						
ETOT_DRIFT	Total Output Error Lifetime Drift ⁽¹⁾	$I_{P} = I_{P(MAX)}$		±1.0		% FS

(1) Guaranteed by design and characterization, not tested in production.


Electrical Characteristics for CT426-xSN820MR


CT426-xSN830DR: 0 A to +30 A

Unless otherwise specified: V_{CC} = 3.0 V to 3.6 V, T_A = -40°C to +125°C, C_{BYP} = 1.0 µF. Typical values are V_{CC} = 3.3 V and T_A = +25°C.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{RANGE}	Current Range		0		+30	А
Voq	Voltage Output Quiescent	T _A = +25°C, I _P = 0 A	0.645	0.650	0.655	V
S	Sensitivity	$I_{RANGE(MIN)} < I_P < I_{RANGE(MAX)}$		66.7		mV/A
Eout	Total Output Error	$I_{P} = I_{P(MAX)}$		±1.0		% FS
ELIN	Non-Linearity Error	I _P = 0 A to +30 A		±0.3		% FS
fвw	Bandwidth ⁽¹⁾	Small Signal = -3 dB		1.0		MHz
e _N	Noise ⁽¹⁾	T _A = +25°C, f _{BW} = 100 kHz		10		mA _{RMS}
Lifetime Drift						
ETOT_DRIFT	Total Output Error Lifetime Drift ⁽¹⁾	$I_{P} = I_{P(MAX)}$		±1.0		% FS

(1) Guaranteed by design and characterization, not tested in production.

Electrical Characteristics for CT426-xSN830DR

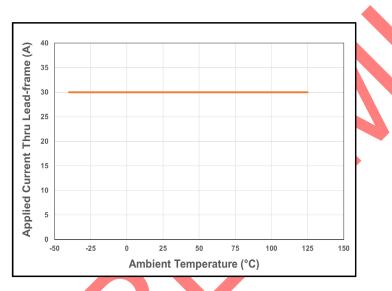
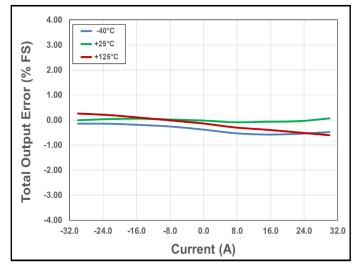
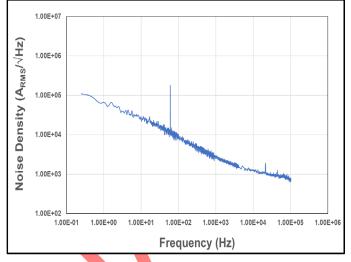


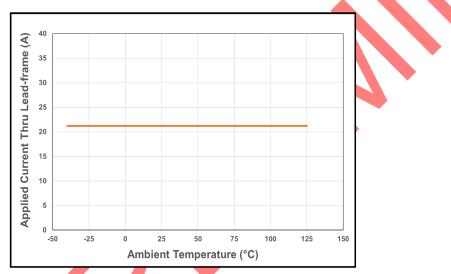
Figure 19. CT426 Current De-rating Curve for 30 A_{DC}


CT426-xSN830MR: -30 A to +30 A

Unless otherwise specified: V_{CC} = 3.0 V to 3.6 V, T_A = -40°C to +125°C, C_{BYP} = 1.0 µF. Typical values are V_{CC} = 3.3 V and T_A = +25°C.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	Current Range		-30		+30	А
Voq	Voltage Output Quiescent	T _A = +25°C, I _P = 0 A	1.645	1.650	1.655	V
S	Sensitivity	$I_{\text{RANGE}(\text{MIN})} < I_{\text{P}} < I_{\text{RANGE}(\text{MAX})}$		33.3		mV/A
Eout	Total Output Error	$I_{P} = I_{P(MAX)}$		±1.0		% FS
ELIN	Non-Linearity Error	I _P = -30 A to +30 A		±0.3		% FS
f _{BW}	Bandwidth ⁽¹⁾	Small Signal = -3 dB		1.0		MHz
e _N	Noise ⁽¹⁾	T _A = +25°C, f _{BW} = 100 kHz		12		mA _{RMS}
Lifetime Drift						
ETOT_DRIFT	Total Output Error Lifetime Drift ⁽¹⁾	$I_{P} = I_{P(MAX)}$		±1.0		% FS

(1) Guaranteed by design and characterization, not tested in production.


Electrical Characteristics for CT431-xSWF30MR

Circuit Description

Overview

The CT426 is a very high accuracy contact current sensor with an integrated current carrying conductor (CCC) that handles up to 30 A. It has very high sensitivity and a wide dynamic range with excellent accuracy (very low total output error) across temperature. This current sensor supports four (4) current ranges:

- 0 A to +20 A
- -20 A to +20 A
- 0 A to +30 A
- -30 A to +30 A

When current is flowing through the CCC, the XtemeSense TMR sensors inside the chip senses the field which in turn generates a differential voltage signals that then goes through the Analog Front-End (AFE) to output a current measurement with less than $\pm 1.0\%$ full-scale (FS) total output error (E_{OUT}).

The chip is designed to enable a very fast response time of $0.35 \ \mu$ s for the current measurement from the OUT pin as the bandwidth for the CT426 is 1.0 MHz. Even with a high bandwidth, the chip consumes a minimal amount of power.

Linear Output Current Measurement

The CT426 provides a continuous linear analog output voltage which represents the current measurement. The output voltage range of OUT is from 0.65 V to 2.65 V with a V_{OQ} of 0.65 V and 1.65 V for unidirectional and bidirectional currents, respectively. Figure 23 illustrates the output voltage range of the OUT pin as a function of the measured current.

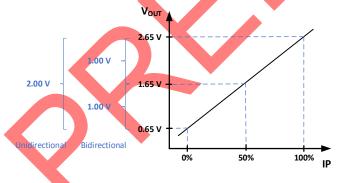
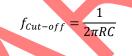



Figure 23. Linear Output Voltage Range (OUT) vs. Measured Current (IP)

Filter Function (FILTER)

The CT426 has a pin for the FILTER function which will enable it to improve the noise performance by changing the cut-off frequency. The bandwidth of the CT426 is 1.0 MHz however by adding a capacitor to the FILTER pin which will be in series with an internal resistance of approximately 15 k Ω will set the cut-off frequency to reduce the noise.

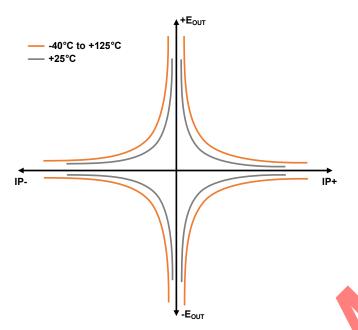
Table 2 shows the capacitor values required to achieve four (4) cut-off frequencies.

Table 2. R-C Filter Options for FILTER Pin

Cut-off Frequency	C _{FILTER} (pF)	Capacitor Part Number
100 kHz	47	GRM0225C1C470JA02
250 kHz	20	GRM0225C1C200JA02
500 kHz	10	GRM0225C1C100JA03
1.0 MHz	5 or lower	GRM0225C1C5R0CA03

Sensitivity

The Sensitivity (S) is a change in CT426's output in response to a change in 1 A of current flowing through the CCC. It is defined by the product of the magnetic circuit sensitivity (G/A, where 1.0 G = 0.1 mT) and the chip's linear amplifier gain (mV/G). Therefore, the result of this gives a sensitivity unit of mV/A. The CT426 is factory calibrated to optimize the sensitivity for the full scale of the device's dynamic range.


Total Output Error

The Total Output Error is the difference between the current measured by CT426 and the actual current, relative to the actual current. It is equivalent to the ratio between the difference of the ideal and actual voltage to the ideal sensitivity multiplied by the current flowing through the primary conductor (CCC). The following equation defines the Total Output Error (E_{OUT}) for the CT426:

$$E_{OUT} = \frac{V_{IOUT_IDEAL}(I_P) - V_{IOUT}(I_P)}{S_{IDEAL}(I_P) \times I_P}$$

The E_{OUT} incorporates all sources of error and is a function of the sensed current (I_P) from CT426. At high

current levels, the E_{OUT} will be dominated by the sensitivity error whereas at low current, the dominant characteristic is the offset voltage. Figure 24 shows the behavior of E_{OUT} versus I_P. When I_P goes to 0 from both directions, the curves exhibit asymptotic behavior i.e. E_{OUT} approaches infinity.

Figure 24. Total Output Error (E_{OUT}) vs. Sensed Current (IP)

The CT426 achieves a total output error (E_{OUT}) that is less than ±1.0% of Full-Scale (FS) over supply voltage and temperature. It is designed with innovative and proprietary TMR sensors and circuit blocks to provide very accurate current measurements regardless of the operating conditions.

Power-On Time (ton)

The Power-On Time (t_{ON}) of 100 µs is the amount of time required by CT426 to start up, fully power the chip and becoming fully operational from the moment the supply voltage is applied to it. This time includes the ramp up time and the settling time (within 10% of steady-state voltage under an applied magnetic field) after the power supply has reached the minimum V_{CC}.

Response Time (tresponse)

The Response Time ($t_{RESPONSE}$) of 0.30 µs for the CT426 is the time interval between the following terms:

- 1. When the primary current signal reaches 90% of its final value,
- 2. When the chip reaches 90% of its output corresponding to the applied current.

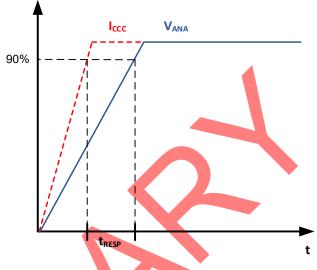
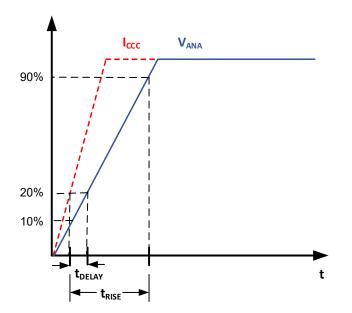


Figure 25. CT426 Response Time Curve

Rise Time (trise)


The CT426's rise time, t_{RISE} , is the time interval of when it reaches 10% and 90% of the full-scale output voltage. The t_{RISE} of the CT426 is 0.20 µs.

Propagation Delay (tDELAY)

The Propagation Delay (t_{DELAY}) is the time difference between these two events:

- 1. When the primary current reaches 20% of its final value
- 2. When the chip reaches 20% of its output corresponding to the applied current.

The CT426 has a propagation delay of 0.25 $\mu s.$

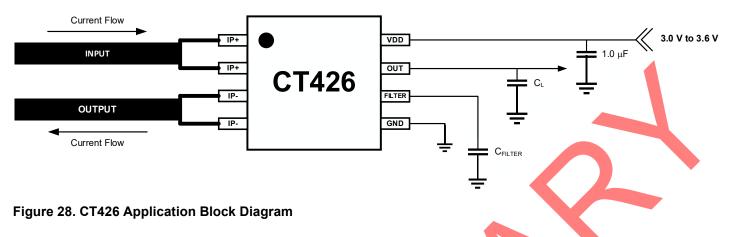
Figure 26. CT426 Propagation Delay and Rise Time Curve

Under-Voltage Lockout (UVLO)

The Under-Voltage Lock-out protection circuitry of the CT426 is activated when the supply voltage (V_{CC}) falls below 2.45 V. The CT426 remains in a low quiescent state until V_{CC} rises above the UVLO threshold (2.50 V). In this condition where the V_{CC} is less than 2.45 V and UVLO is triggered, the output from the CT426 is not valid and the FLT pin will go LOW. Once the V_{CC} rises above 2.50 V then the UVLO is cleared, and the FLT pin will be HIGH.

Immunity to Common Mode Fields

The CT426 is housed in custom plastic packages that utilize a "U-shaped" lead-frame to reduce the common mode fields generated as current flows through the CCC. With the "U-shaped" lead-frame, the stray fields cancel one another thus reducing electro-magnetic interference (EMI).


Also, good PCB layout of the CT426 will optimize performance and reduce EMI. Please see the Applications Information section in this data sheet for recommendations on PCB layout.

Creepage and Clearance

Two important terms as it relates to isolation provided by the package are: creepage and clearance. Creepage is defined as the shortest distance across the surface of the package from one side the leads to the other side of the leads. The definition for clearance is the shortest distance between the leads of opposite side through the air. Figure 27 illustrates the creepage and clearance for the SOIC-8 package of the CT426.

Figure 27. The Creepage and Clearance for the CT426's SOIC-8 package

Applications Information

Application

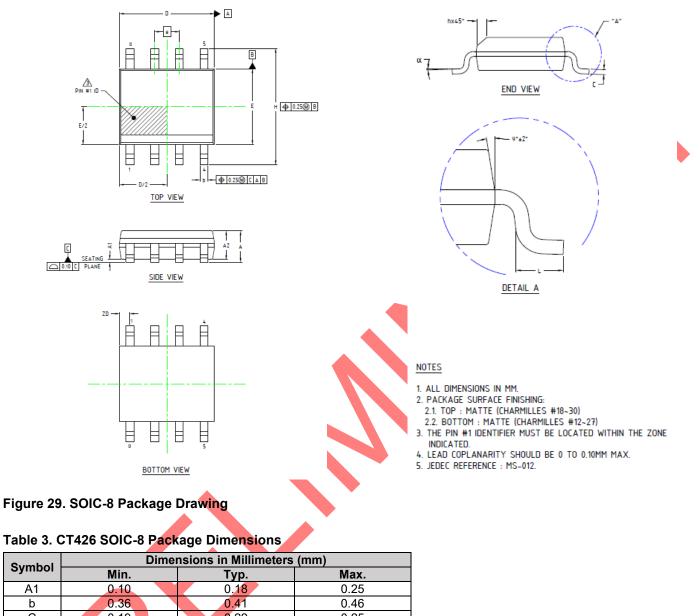
The CT426 is an integrated contact current sensor that can be used in many applications from measuring current in power supplies to motor control to over-current fault protection. It is a plug-and-play solution in that no calibration is required and it outputs to a microcontroller a simple linear analog output voltage which corresponds to a current measurement value.

It is designed to support an operating voltage range of 3.3 V to 3.6 V, but it is ideal to use a 3.3 V power supply where the output tolerance is less than $\pm 5\%$.

Bypass Capacitor

A single 1.0 μ F capacitor is needed for the VCC pin to reduce the noise from the power supply and other circuits. This capacitor should be placed as close as possible to the CT426 to minimize inductance and resistance between the two devices.

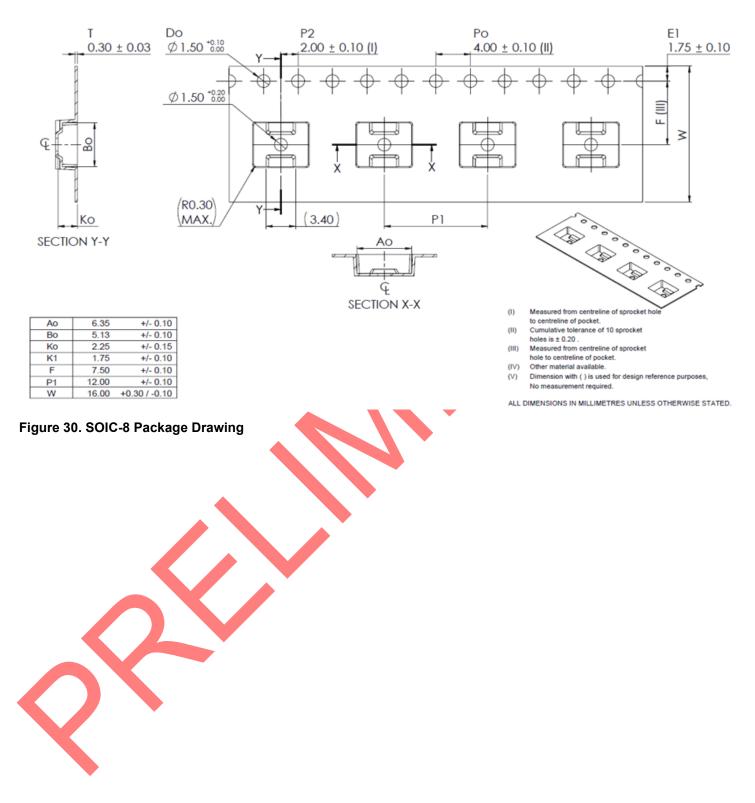
Filter Capacitor


A capacitor may be added to the FILTER pin of the CT426 if there is a requirement to improve the noise performance. The capacitor will be connected to an internal resistor of 15 k Ω inside the chip to form a R-C filter. This R-C filter produces a cut-off frequency that will reduce the noise over this lower bandwidth.

Recommended PCB Layout

Since the CT426 can measure up to 30 A of current, special care must be taken in the printed circuit board (PCB) layout of the CT426 and the surrounding circuitry. It is recommended that the CCC pins be connected to as much copper area as possible. It is also recommended

that 2 oz, or heavier copper be used for PCB traces when the CT426 is used to measure 30 A of current. Additional layers of the PCB should also be used to carry current and be connected using the arrangement of vias.


SOIC-8 Package Drawing and Dimensions

731	0.10	0.10	0.20	
b	0.36	0.41	0.46	
С	0.19	0.22	0.25	
D	4.80	4.89	4.98	
E	3.81	3.90	3.99	
е		1.27 BSC		
Н	5.80	6.00	6.20	
h	0.25	0.37	0.50	
L	0.41	-	1.27	
A	1.52	1.62	1.72	
α	0°	-	8°	
ZD	0.53 REF			
A2	1.37	1.47	1.57	

Crocus Technology provides package drawings as a service to customers considering or planning to use Crocus products in their designs. Drawings may change without notice. Please note the revision and date of the data sheet and contact a Crocus Technology representative to verify or obtain the most recent version. The package specifications do not expand the terms of Crocus Technology's worldwide terms and conditions, specifically the warranty therein, which covers Crocus Technology's products.

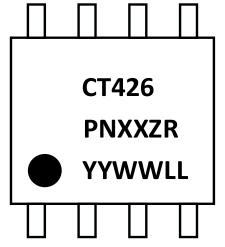
SOIC-8 Tape & Pocket Drawing and Dimensions

Package Information

Table 4. CT426 Package Information

Part Number	Package Type	# of Leads	Quantity per Reel	Lead Finish	MSL Rating ⁽²⁾	Operating Temperature ⁽³⁾	Device Marking ⁽⁴⁾
CT426-ESN820DR	SOIC	8	2,000	Sn	3	-40°C to +85°C	CT426 S820DR YYWWLL
CT426-HSN820DR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT426 S820DR YYWWLL
CT426-ESN820MR	SOIC	8	2,000	Sn	3	-40°C to +85°C	CT426 S820MR YYWWLL
CT426-HSN820MR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT426 S820MR YYWWLL
CT426-ESN830DR	SOIC	8	2,000	Sn	3	-40°C to +85°C	CT426 S830DR YYWWLL
CT426-HSN830DR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT426 S830DR YYWWLL
CT426-ESN830MR	SOIC	8	2,000	Sn	3	-40°C to +85°C	CT426 S830MR YYWWLL
CT426-HSN830MR	SOIC	8	2,000	Sn	3	-40°C to +125°C	CT426 S830MR YYWWLL

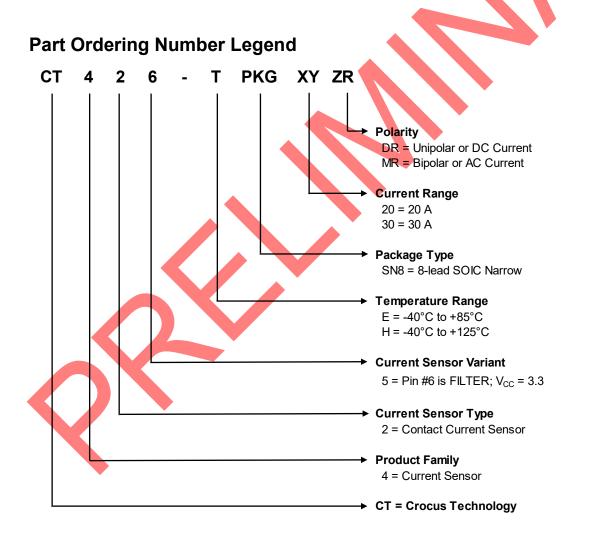
(1) RoHS is defined as semiconductor products that are compliant to the current EU RoHS requirements. It also will meet the requirement that RoHS substances do not exceed 0.1% by weight in homogeneous materials. Green is defined as the content of Chlorine (CI), Bromine (Br) and Antimony Trioxide based flame retardants satisfy JS709B low halogen requirements of ≤ 1,000 ppm.


(2) MSL Rating = Moisture Sensitivity Level Rating as defined by JEDEC standard classifications.

(3) Package will withstand ambient temperature range of -40°C to +125°C and storage temperature range of -65°C to +150°C.

(4) Device Marking for CT426 is defined as CT426 S8xxZR YYWWLL where the first 2 lines = part number, YY = year, WW = work week and LL = lot code.

CT426


Device Marking

Code	Definition
•	Pin 1 Indicator
CT426	Crocus Part Numbe <mark>r</mark>
Р	Package Type
Ν	Number of Pins
XX	Maximum Current Rating
ZR	Current Range
YY	Calendar Year
WW	Work Week
LL	Lot Code
	CT426 P N XX ZR YY

 Table 5. CT426 Device Marking Definition for 8-lead

 SOIC Package

Disclaimer: The contents of this document are provided for informational purposes only. CROCUS TECHNOLOGY, INC. AND CROCUS TECHNOLOGY SA (COLLECTIVELY "CROCUS") MAKE NO REPRESENTATIONS OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS HEREIN, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Crocus reserves the right to make changes to the specifications and product descriptions, and/or to discontinue or make changes to its products at any time without notice. Crocus's products have not been designed, tested, or manufactured for use and should not be used in applications where the failure, malfunction or inaccuracy of the Products carries a risk of death or serious bodily injury or damage to tangible property, including, but not limited to, life support systems, nuclear facilities, military, aircraft navigation or communication, emergency systems, harsh environments, or other applications with a similar degree of potential hazard.

Data Sheet Identification	Product Status	Definition
Objective	Proposed New Product Idea or In Development	Data sheet contains design target specifications and are subject to change without notice at any time.
Preliminary	First Production	Data sheet contains preliminary specifications obtained by measurements of early samples. Follow-on data will be published at a later date as more test data is acquired. Crocus reserves the right to make changes to the data sheet at any time.
None	Full Production	Data sheet contains final specifications for all parameters. Crocus reserves the right to make changes to the data sheet at any time.
Obsolete	Not in Production	Data sheet for a product that is no longer in production at Crocus. It is for reference only.

Product Status Definition