

F4-(A)HDMO-D100R26-5P

F4-(A)HDMO-D100R26-5P

High SNR / Multiple Clock Mode / Narrow Sensitivity

> OMNI-DIRECTIONAL **BOTTOM PORT**

Best sound electronics

Value no1. Micro sound provider

Creative technology starts from respecting of life of the individuals

Best sound electronics

Value no1. Micro sound provider

We offer you happiness with our excellent technology beyond an ordinary sound what you expect

A A AVAVAVAM

Best sound electronics Value no1. Micro sound provider

Keep basic fundamentals to fill sound with new innovations

1. INTRODUCTION

- Digital MEMS Microphone ½ Cycle PDM 16bit, Full Scale=120dBSPL
- Bottom Port Type Sensitivity is Typical -26dBFS at LPM and STM
- High Signal to Noise Ratio(SNR) Typical 64.6dB (A-weighted, 20Hz~20Hz) at fclk=2.4Mz
- Multiple Clock Mode Stand by Mode, Low-Power Mode(LPM), Standard Mode(STM)
- Narrow Sensitivity +/-1dB
- Omni-directional
- · Dual Channel supported
- RF Shielded with embedded Ground
- Compatible with Sn/Pb and Halogen-free solder process
- RoHS compliant
- SMD reflow temperature of up to 260°C for over 30 seconds

2. APPLICATIONS

- Smartphones
- Ear-sets, Bluetooth Headsets
- Smart Speaker, Set Top Box
- Tablet Computers
- Wearable Devices
- Electrical Appliances
- Voice Recognition Systems of Appliances

3. MODEL NO.

F4-(A)HDMO-D100R26-5P

4. ABSOLUTE MAXIMUM RATINGS

Parameter	Absolute maximum rating	Units
VDD , Data to Ground	3.6	V
Clock to Ground	3.6	V
Select to Ground	3.6	V
Input Current	2	mA
Short Circuit Current to/from Data	Infinite to Ground or VDD	sec

Caution: Stresses above those listed in "Absolute maximum ratings" may cause permanent damage to the device.

These are stress ratings only. Functional operation at these or any other conditions beyond those indicated under "ELECTRO-ACOUSTIC CHARACTERISTICS" is not implied. Exposure beyond those indicated under "ELECTRO-ACOUSTIC CHARACTERISTICS" for extended periods may affect device reliability.

5. GENERAL MICROPHONE SPECIFICATIONS

Test Condition : $23 \pm 2^{\circ}$ C, Room Humidity = $55 \pm 20^{\circ}$ M, VDD=1.8V, fclk = 2.4MHz, SELECT Pin is grounded, no load on DATA, unless otherwise noticed

Parameter		Conditions	Min	Тур	Max	Units
	Stand by Mode	Max. Tolerance ±5%	0	-	350	kHz
* Clock	Low-Power Mode	Generally at $\pm 10\%$ of typical value	512	768	850	kHz
Frequency Range	Standard Mode		1.38	-	3.3	MHz
Standby Mod	e Current	fclk < 350kHz	-	25	50	Ац
Short Circuit (Current	Grounded DATA pin	1	-	20	mA
Clock off Mode Current		Clock pulled low	-	<1	35	Ац
VDD Ramp-up	Time (Power-up)	V _{DD} ≥ V _{DD} (min)	-	-	50	ms
Startup Time		Time to start up in any mode after VDD and CLOCK applied	-	-	50	ms
Time to start up in any mode after VDD has been off for more than10ms, while CLOCK remained on		-	-	50	ms	
Mode-Change	e Time	Time to switch between modes. VDD remains on during the mode switch	-	-	50	ms

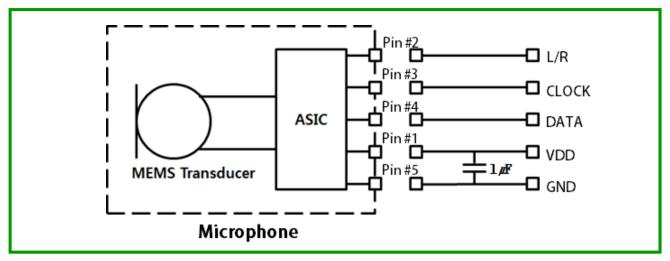
^{*} Note: Must be consulted when used another clock frequency without the typical clock frequencys.

6. ELECTRO-ACOUSTIC CHARACTERISTICS

Test Condition : 23 \pm 2°C, Room Humidity = 55 \pm 20 %, VDD=1.8V, fclk = 2.4MHz, SELECT Pin is grounded, no load on DATA , unless otherwise noticed

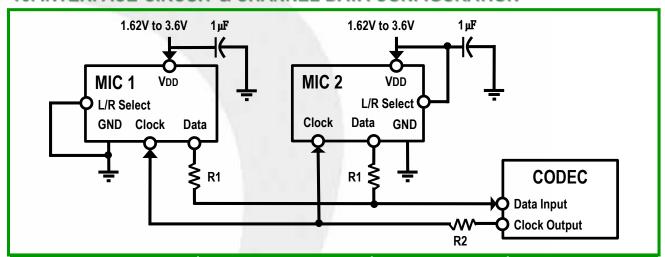
Parameter	Conditions	Min	Тур	Max	Units
Directivity		Om	ni-directi	onal	
Supply Voltage (VDD)		1.62	-	3.6	V
Sensitivity Change across Voltage	VDD=1.62~3.6V, fclk=2.4 ^{MHz}	1	No change		dB
Data Format		1∕2 Cy	½ Cycle PDM 16bit		
Full Scale Acoustic Level			120		dBSPL
	fclk = 1.536 ^{Mb} , load on DATA output	450	-	650	
Current Consumption (IDD)	fclk = 2.4 MHz, load on DATA output	580	-	780	μА
	fclk = 3.072Mz, load on DATA output	690	-	890	
• Standard Mode					
Test Conditions : Measure	ment Clock Frequency=2.4MHz, VDD=1	.8V			
Sensitivity	94dB SPL at 1kHz	-27	-26	-25	dBFS
Signal to Noise Ratio (SNR)	94dBSPL at 1kHz, A-weighted (20Hz~20kHz)	-	64.6	-	dB(A)
Equivalent Input Noise (EIN)	94dBSPL at 1kHz, A-weighted (20Hz~20kHz)	-	29.4	-	dB(A)SPL
	94dBSPL at 1kHz	-	-	0.4	%
Total Harmonic Distortion	102.5dBSPL at 1kHz	-	-	1.0	%
(THD)	112dBSPL at 1kHz	-	-	3.0	%
	116dBSPL at 1kHz	-	-	5.0	%
Acoustic Overload Point (AOP)	THD>10%, at 1 ^{kHz}	119	120	-	dBSPL
Power Supply Rejection Raito (PSRR)	Measured with 1 ^{kHz} sine wave and broad band noise, both 200mVpp	-	56	-	dBV/FS
Power Supply Rejection (PSR)	Measured with 217 ^{Hz} square wave and broad band noise, both 100mVpp, A-weighted	-	-87.5	-	dBFS(A)
Low Power Mode					
Test Conditions : Measure	ment Clock Frequency=768kHz, VDD=1	.8V			
Current consumption (IDD)	load on DATA output	160	-	360	μA
Sensitivity	94dB SPL at 1kHz	-27	-26	-25	dBFS
Signal to Noise Ratio (SNR)	94dBSPL at 1kHz, A-weighted (20Hz~8kHz)	-	64	-	dB(A)
Equivalent Input Noise (EIN)	94dBSPL at 1kHz, A-weighted (20Hz~8kHz)	-	30	-	dB(A)SPL
	94dBSPL at 1kHz	-	-	0.4	%
Total Harmonic Distortion	102.5dBSPL at 1灺	-	-	1.0	%
(THD)	112dBSPL at 1kHz	-	-	3.0	%
	116dBSPL at 1kHz	-	-	5.0	%
Acoustic Overload Point (AOP)	THD>10%, at 1kHz	118	119	-	dBSPL
Power Supply Rejection Raito (PSRR)	Measured with 1 ^{kHz} sine wave and broad band noise, both 200mVpp	-	56	-	dBV/FS
Power Supply Rejection (PSR)	Measured with 217Hz square wave and broad band noise, both 100mVpp, A-weighted	-	-87.5	-	dBFS(A)

^{*} Note: A 1uF bypass capacitor should be placed close to the microphone's VDD pin to ensure best SNR performance



7. INTERFACE PARAMETER

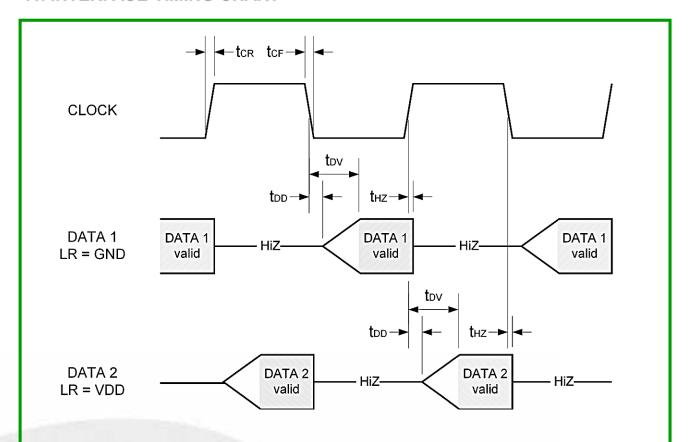
Parameter	Conditions	Min	Тур	Max	Units
	fclk <= 3.072MHz	40	-	60	0/
Clock Duty Cycle	fclk > 3.072MHz	48	-	52	%
Input Logic Low Level		-0.3	-	0.35 x VDD	V
Input Logic High Level		0.65 x VDD	-	VDD + 0.3	V
Hysteresis Width		0.1 x VDD	-	0.29 x VDD	V
Output Logic Low Level		-	-	0.3 x VDD	V
Output Logic High Level		0.7 x VDD	-	-	V
Output Load Capacitance on DATA		-	-	200	pF
Clock Rise / Fall Time		-	-	13	ns
Delay Time for DATA driven (tdd)	Delay time from CLOCK edge(50% VDD) to DATA driven	40	-	80	ns
Delay Time for High Z (tHZ)	Delay time from CLOCK edge(50% VDD) to DATA high impedance state	5	-	30	ns
Delay Time for DATA Valid (tDV)	Delay time from CLOCK edge(0.50 x VDD) to DATA valid(<0.30 x VDD or >0.70 x VDD) Rload, min = $100k\Omega$ Cload, max = $100pF$	-	-	100	ns


8. MEASUREMENT CIRCUIT

9. PIN DESCRIPTION

Pin Name	Description
VDD	Supply and IO voltage for the microphone
L/R Select	Left/Right (DATA2 / DATA1) Channel selection
CLOCK	Clock input to the microphone
DATA	PDM data output from the microphone
GND	Ground

10. INTERFACE CIRCUIT & CHANNEL DATA CONFIGURATION



Data symbol in interface timing chart	L/R Select connected to	Data asserted at	Data sampled at
DATA1 [MIC1(Low)]	GND	Falling clock edge	Rising clock edge
DATA2 [MIC2(High)]	VDD	Rising clock edge	Falling clock edge

- Note 1 : Stereo operation is accomplished by connecting the L/R Sel. pin either to VDD or GND on the phone PWB. Bypass Capacitors near each MIC. on VDD are recommended to provide maximum SNR performance.
- Note 2 : R1(Data source termination Resister) should be as close as possible to each the MIC. $(50\Omega \sim 100\Omega)$
- Note 3 : R2(Clock source termination Resister) should be as close as possible to the CODEC. $(50\Omega \sim 100\Omega)$

11. INTERFACE TIMING CHART

With defining a minimum value for t_{DD} and a maximum value for t_{HZ} it is secured that the driven DATA signals of the right and the left channel don't overlap. A definition of a maximum value for t_{DD} is not necessary, instead t_{DV} defines the time until the driven DATA is valid.

Parameter	Conditions	Min	Тур	Max	Units
Clock Rise/Fall Time (tcr, tcr)		-	-	13	ns
Delay Time for DATA Valid (t _{DV})	Delay time from CLOCK edge (0.50 x VDD) to DATA valid (<0.30 x VDD or >0.70 x VDD)	-	-	100	ns
Delay Time for DATA driven (tdd)	Delay time from CLOCK edge(50% VDD) to DATA driven	40	-	80	ns
Delay Time for High Z (tHz)	Delay time from CLOCK edge(50% VDD) to DATA high impedance state	5	-	30	ns

12. TYPICAL FREQUENCY RESPONSE CURVE

Far Field Measurement Condition Temperature: $23 \pm 2 \,^{\circ}$ C Supply Voltage: 1.8 VClock Frequency: 2.4 MHz

Acoustic stimulus: 1Pa (94dB SPL at 1kHz) at 50 cm from the loud-speaker.

The loud-speaker must be calibrated to make a flat frequency response input signal.

Position: The frequency response of microphone unit measured at 50m from the loud-speaker

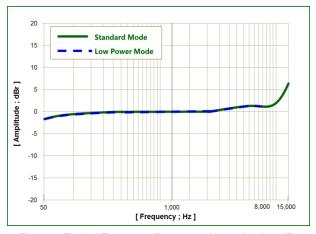


Figure 1. Typical Frequency Response, Normalized to 1 kHz

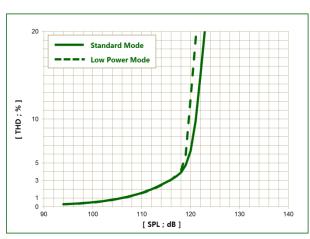


Figure 2. THD vs. Input Level, Standard and Low-Power Modes

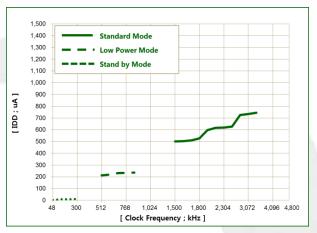


Figure 3. Typical IDD vs. Clock Frequency, All Mode

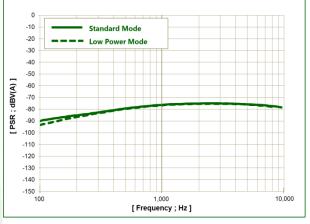
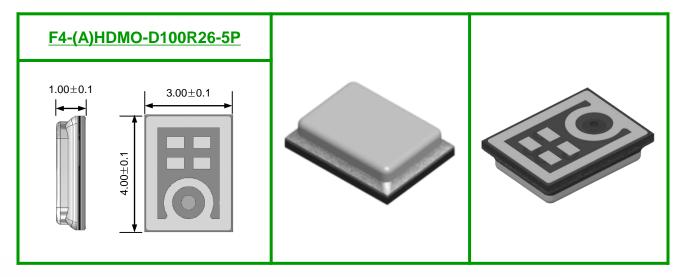


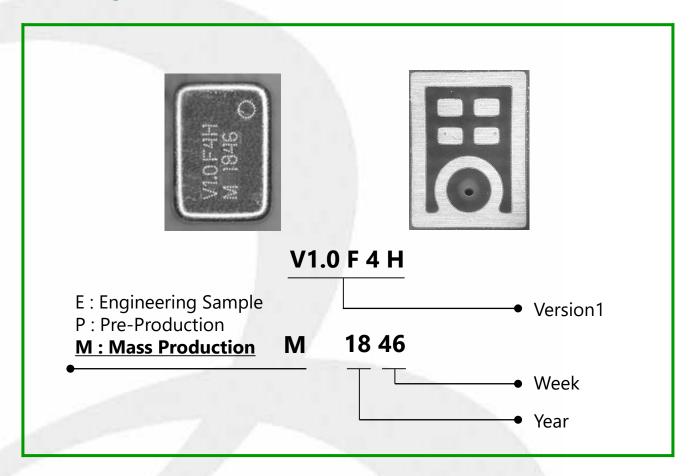
Figure 4. Typical Power Supply Rejection (PSR) vs. Frequency, Standard and Low-Power Modes

■ Frequency Mask Specification

	•		
Frequency [Hz]	Lower Limit [dBr]	Upper Limit [dBr]	Note
50 ~ 1000	-2	+2	
1000	0	0	
1000 ~ 5000	-2	+2	$0dBr = dBFS at 1^{kHz}$
10000	-2	+5	
15000	-2	+8	

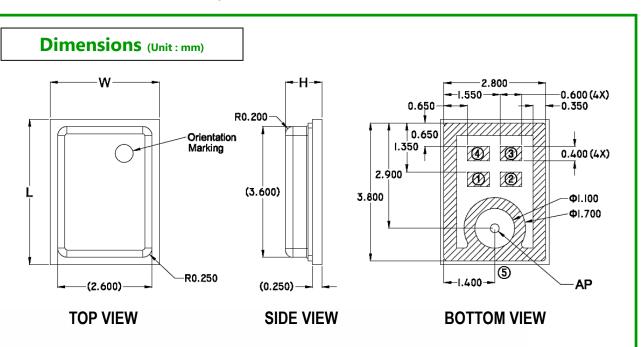
Note: Band Frequency Range


1. Narrow Band : 300Hz ~ 3.4kHz 2. Wide Band : 100Hz ~ 7kHz 3. Super Wide Band : 50Hz ~ 14kHz


13. MECHANICAL CHARACTERISTICS

X PCB design & Pin size can be changed by model No.

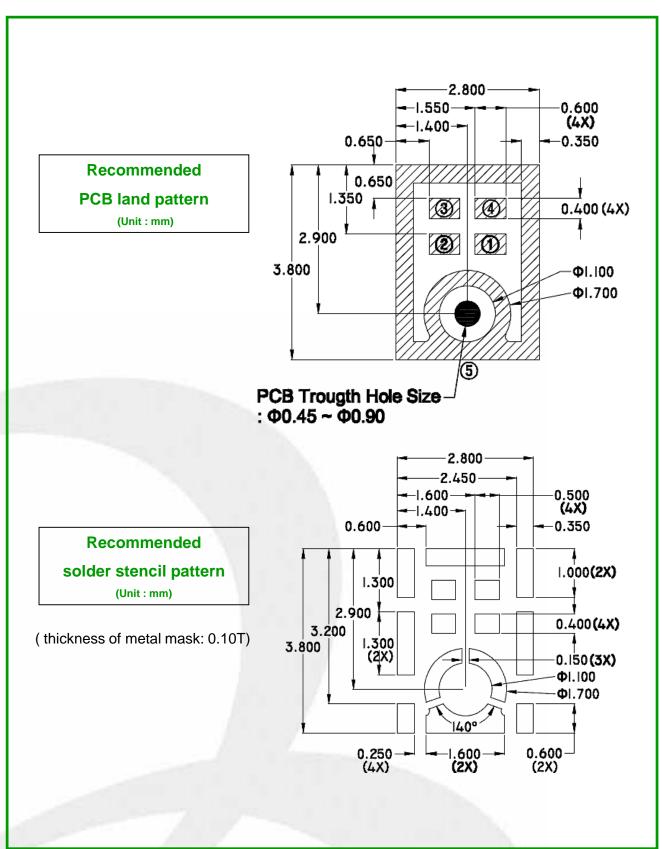
SMD Type


Lettering

13. MECHANICAL CHARACTERISTICS

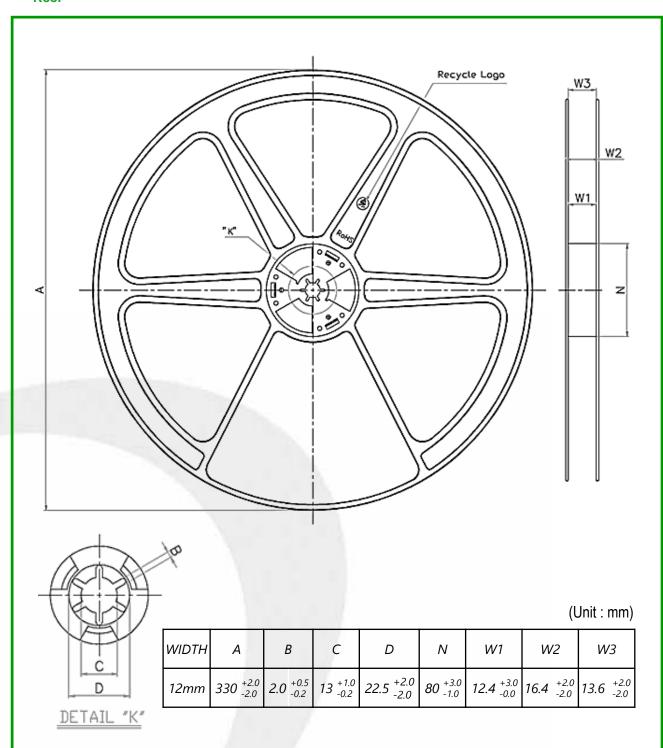
- Mechanical dimensions & Pad Lay-out

Item	Dimension	Tolerance (+/-)	Units
Length (L)	4.00	0.10	mm
Width (W)	3.00	0.10	mm
Height (H)	1.00	0.10	mm
Acoustic Port (AP)	Ф 0.25	0.10	mm


Pin#	Pin Name	Туре	Description
1	VDD	Power Supply and I/O voltage	
2	L/R	L/R Select	Left/Right channel selection
3	CLK	Clock	Clock input
4	DATA	Digital O	PDM data output
5	GND	Ground	Ground

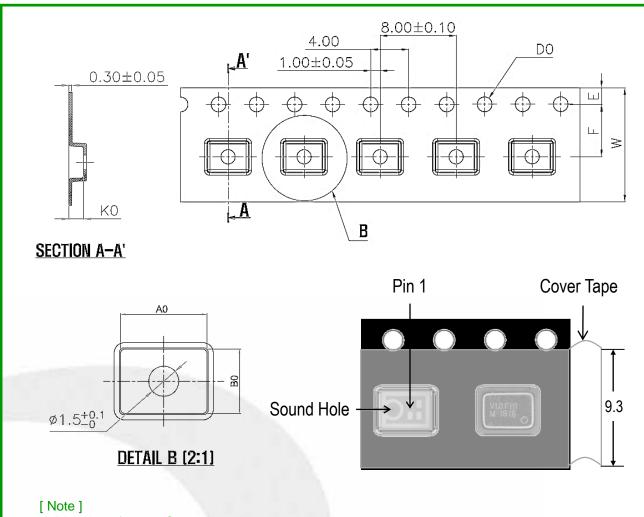
Note : All ground Pins must be connected to ground. "3"Pin must be sealed by solder paste on the PWB. General Tolerance ± 0.08 mm.

13. MECHANICAL CHARACTERISTICS


- Recommended Land Pattern & Stencil Pattern

14. PACKAGING SPECIFICATION

- Reel

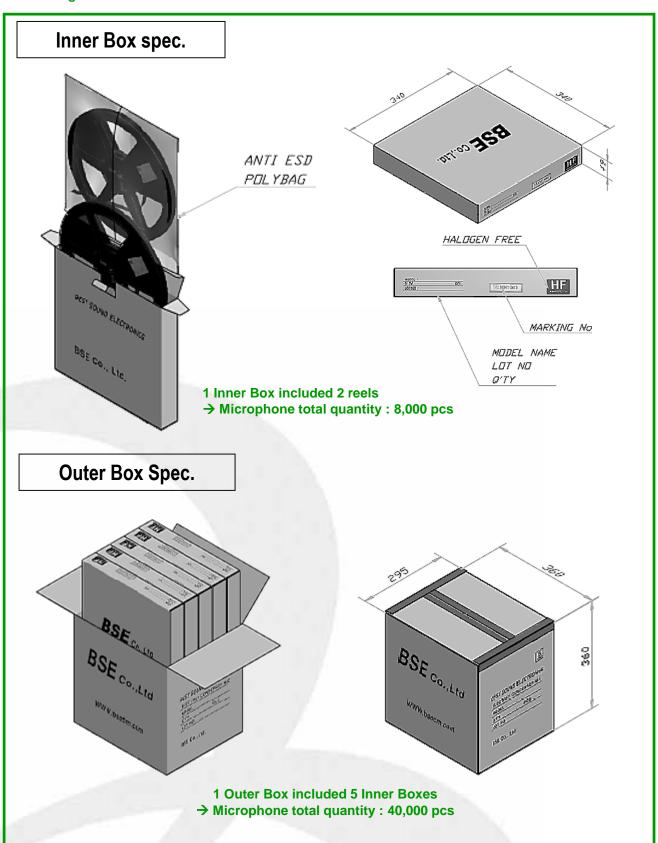


• 13" reel will be provided for the mass production stage

14. PACKAGING SPECIFICATION

- Taping

- 1. Direction of parts: See above pictures.
- 2. Microphone total quantity (13" Reel): 4,000pcs
- 3. Carrier Tape ESD : $10^2 \sim 10^{10} \Omega$
- 4. Cover Tape Inside ESD : $10^2 \text{--} 10^{10} \Omega$
- 5. Carrier Tape Material & Color: PS, Black
- 6. Thermo Compression Bonding


A0	4.30±0.10	Е	1.75±0.10
В0	3.20±0.10	F	5.50±0.05
K0	1.30±0.10		0.30±0.05
D0	1.50±0.10	W	12.00±0.30

Unit: mm

14. PACKAGING SPECIFICATION

- Packing

TEMPERATURE

AND HUMIDITY

ESD

(Electrostatic

Discharge)

ESD-HBM

ANSI/ESDA/JEDEC

JS-001

VIBRATION

DROP

REFLOW

SENSITIVITY

15. RELIABILITY TEST CONDITIONS

shall not deviate more than $\pm 1dB$ from its initial value. **TEST** DESCRIPTION [High Temperature Storage] +80°C±3°C x 200hrs (The measurement to be done after 2 hours of conditioning at room temperature) **TEMPERATURE STORAGE** [Low Temperature Storage] -30°C±3°C x 200hrs (The measurement to be done after 2 hours of conditioning at room temperature) (-25°C±2°C x 30min -> +20°C±2°C x 10min -> +70°C±2°C x 30min -> +20°C±2°C **TEMPERATURE** x 10min) x 5cycles CYCLE (The measurement to be done after 2 hours of conditioning at room temperature) (+85°C±2°C -> -40°C±2°CChange time : 20sec) x 48cycles Maintain : 60min THERMAL SHOCK (The measurement to be done after 2 hours of conditioning at room temperature) +85°C±2, 85±%RH, Bias(3.6V) x 200hrs HIGH (The measurement to be done after 2 hours of conditioning at room temperature)

(The measurement to be done after 2 hours of conditioning at room temperature)

Signal 5Hz to 500Hz, acceleration spectral density of 0.01g²/Hz in each of 3 axes,

+70°C±2, 95±%RH x 200hrs

Air discharge : $\pm 8kV$, $\pm 10kV$, $\pm 12kV$, $\pm 15kV$

Contact discharge: $\pm 2kV$, $\pm 4kV$, $\pm 6kV$, $\pm 8kV$

120 min in each axis (360min in total)

VDD, Data, CLK, L/R, GND Pad each 5 times (Non-ground)

VDD, Data, CLK, L/R, GND Pad each 5 times (Non-ground)

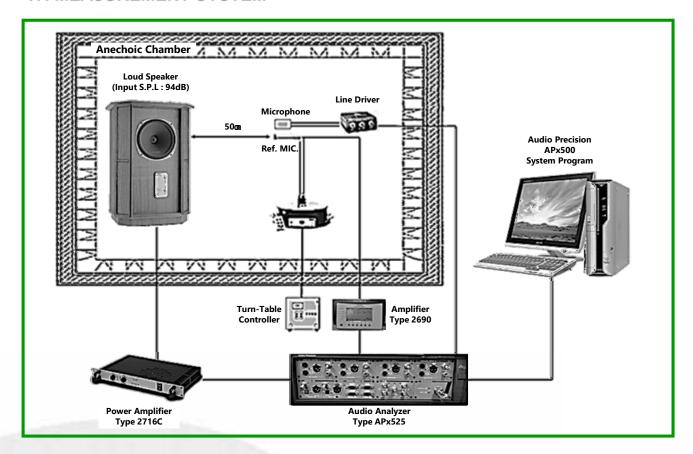
target: 50V(internal interface pins to the MEMS chip)

target: 2000V (external pins of the microphone module)

To be no interference in operation after dropped to steel floor

18 times from 1.52 meter height in state of packing (with 180g jig)

5 reflow cycles. Refer to reflow profile from specification item 18.


Note: After test conditions are performed, the sensitivity of the microphone

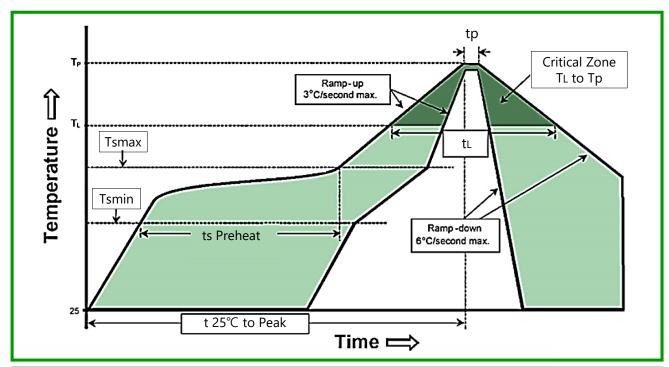
16. ENVIRONMENTAL CHARACTERISTICS AND STANDARD CONDITIONS

ltem	Min	Тур	Max	Unit
Operating temperature range	-40	-	+100	°C
Storage temperature range	-40	-	+100	°C
Relative humidity	25	-	85	%
Air Pressure	860	-	1060	mBar
Standard temperature range	15	20	25	°C
Standard Relative humidity	40	-	60	%

17. MEASUREMENT SYSTEM

17.1 Measurement Condition

(a) Supply voltage: 1.8V


(b) Clock Frequency: 768kHz, 2.4 MHz (c) Acoustic stimulus: 94dB SPL at 1kHz (d) Distance between MIC & SPK: 50cm

(e) Measurement frequency : 50 ($^{\text{Hz}}$) \sim 20 ($^{\text{kHz}}$)

Machine	Model No	Purpose
Standard MIC	4191	Revision of input signal & SPK spec
Audio Analyzer	APX525	Audio Analysis (include Power Supply)
Loud-speaker	GRF Memory HE	SPK (Input sound Signal occur)
Power Amplifier	2716C	Power amplification
Charging Conditioning Amplifier	2690	Ref. MIC Signal Transformation
Operating Software	APx500 4.4	A-D Freq. Resp.
Sound Level Calibrator	4231	Standard MIC Calibration purpose

18. SOLDER REFLOW PROFILE

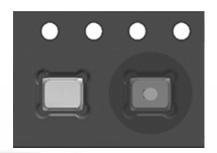
Profile Feature	Pb-Free Assembly
Preheat/Soak	
Temperature Min (Tsmin)	150℃
Temperature Min (Tsmax)	200℃
Time(ts) from (Tsmin to Tsmax)	60 ~ 120 seconds
Ramp-up rate (TL to Tp)	3°C/second max.
Liquidous temperature(TL)	217℃
Time(tL) maintained above TL	60 ~ 150 seconds
Peak package body temperature (Tp)	260℃
Time(tp) within 5°C of the specified classification Temperature(Tc)	20 ~ 40 seconds
Ramp-down rate (Tp to TL)	6°C/second max.
Time 25°C to peak temperature	8 minutes max.

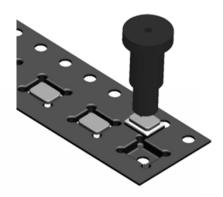
[Notes]

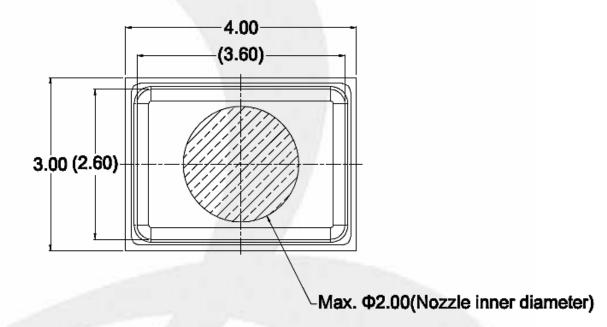
- 1. Solder Reflow Profile based on IPC/JDEC J-STD-020 Revision D.
- 2. Do not pull a vacuum over the port hole of the microphone. Pulling a vacuum over the port hole can damage the device.
- 3. Do not board wash after the reflow process. Board washing and cleaning agents can damage the device. Do not expose to ultrasonic processing or cleaning.
- 4. Recommend no more than 5 cycles.
- 5. Shelf life: Twelve(12) months when devices are to be stored in factory supplied, unopened ESD moisture sensitive bag under maximum environmental condition of 30°C, 70% R.H.
- 6. Exposure: Devices should not be exposed to high humidity, high temperature environment. MSL (Moisture sensitivity level) Class 1.
- 7. Out of bag: Maximum of 90 days of ESD moisture sensitive bag, assuming maximum conditions of 30°C, 70% R.H.

19. RECOMMENDED PICK-UP NOZZLE CONDITIONS

19.1. Nozzle material: Metal or Rubber, Etc.


19.2. Case Weight

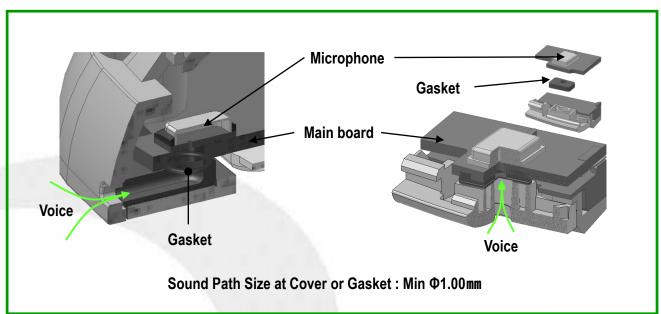

If tool outer size is bigger than MIC.: Max. 10N
If tool outer size is smaller than MIC.: Max. 4N

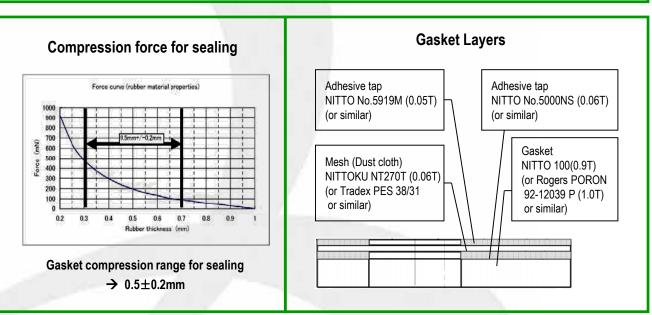

19.3. Nozzle position: The opposite side of sound hole

- Nozzle inner diameter size : Max. Ø2.0

- position : the MIC center



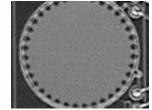




20. APPLICATION EXAMPLE

21.1. Handling Guide of Cleaning & Foreign Matter

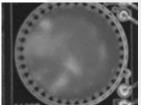
- * Note 1. No Liquid or/and gas should be used for washing / cleaning.
- * Note 2. No board washes should be applied after reflow
- * Note 3. No foreign matter should be exposed interior microphone during cleaning or washing.


 if cleaning or washing is applied unavoidably, It must do additional prevention in area of

 "Microphone sound hole" to avoid foreign matter.(ex. Attached protective tape)
- * Note 4. No seal sound hole of microphone should be applied during reflow process
- * Note 5. No ultrasonic cleaning should be applied in case of microphone unit itself or/and after installed microphone onto board.
- * Note 6. <u>Do not reuse microphone which is defect during SMD.</u>

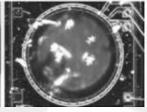
 <u>Do not wash or clean to reuse microphone which is defect during SMD.</u>

De-cap View of Good part



► Example) De-cap View of the NG Microphone

Reflow after sealing of Sound Hole



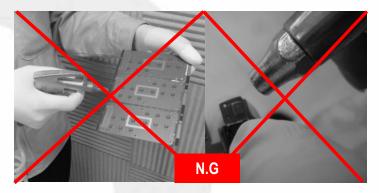
Defect view NG MIC by ultrasonic cleaning

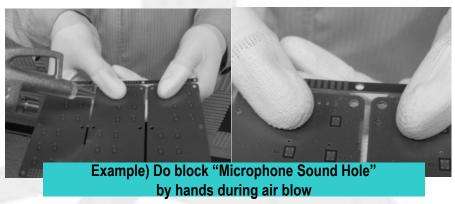
Defect view NG MIC by liquid foreign matter

Defect view NG MIC by Pick-up

21.2. Handling Guide of Care of Board Routing & Cutting

- * Note 1. <u>Do work maximum distance with microphone and minimum speed machining setting</u>

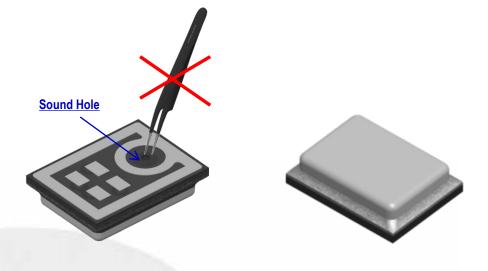

 <u>during Board Routing & Cutting</u>
- * Note 2. Do not wash or clean "Board" after Board Routing & Cutting
- * Note 3. <u>Do additional prevention in area of "microphone sound hole" to avoid foreign</u>


 <u>matter(ex. Attached protective tape) during Board Routing & Cutting</u>
- * Note 4. <u>Do not use strong air flow directly in order to remove foreign matter should be applied</u>
 in microphone
- * Note 5. Do preventive action in area of "microphone sound hole" to avoid foreign

 matter(ex. Attached protective tape) or air.

 (ex. Block "Microphone sound hole" by hands as below picture)

► Example) Air Blowing Condition



21.3. Broken Membrane & Back Plate of MEMS DIE

- * Note 1. <u>Do not touch Sound Hole by Sharp Tools.</u> (ex. Tweezers)
- * Note 2. Do not rub Sound Hole by Swab. (ex. Cloth)

21.4. PRECAUTION for ESD

* Note 1. Wrist straps

Since the main cause of static is people, wrist-straps is very important to reduce the ESD damage. A wrist-strap, when properly grounded, keeps a person wearing it near ground potential and static charges do not accumulate. Wrist-straps should be worn by all personnel in all ESD protection areas, that is where ESD susceptible devices and end products containing them are assembled, manufactured handled and packaged.

Further ESD protection, similar to wrist-strap, involves the use of ESD protection floors in conjunction with ESD control footwear or foot-straps. Static control garments (smocks) give additional protection.

* Note 2. Work Areas

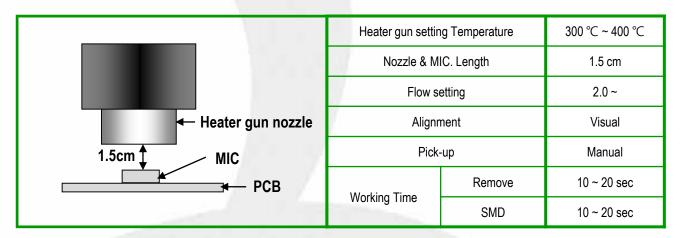
It is recommended that all areas where components that are not in ESD protective packaging are handled should be designated as ESD protective areas. Ground mats of ESD safe table surfaces is needed. These should be connected to the local ground with a 1 Mega-ohm series resistor. ESD safe floor and shoes are also needed.

* Note 3. Ionizers

In situations where we have to deal with isolated conductors that cannot be grounded and with most common plastics, air ionization can neutralize the static charge because only air is required for ionization to be effective, air ionizers can and should be used wherever it is not possible to ground everything.

21.5. Inspection by X-Ray

* Note 1. <u>Do inspect X-Ray after SMD.</u> It is different X-Ray condition by applied SMD company.		


22. REWORK

22.1. Recommended Heater Gun Specification

Manufacturer		HAKKO	
Model		850B ESD	
Temperature control		100 ~ 420	
Top heater	Туре	Hot air flow	
	Flow rate	< 23 ℓ /min	
Alignment		visual	
Pick-up		Manual	
Solder/flux		1. Removing or pre-heating the solder residue before mounting new part 2. Apply lead-free flux only or apply 2 ~ 3 points of solder paste instead	

22.2. Recommended Heater Gun Setting Condition

^{*} Note 1. According to the material & thickness & counts of layer for PCB, this condition will be change.

^{*} Note 2. According to Rework M/C & Worker, this condition will be change.

22. REWORK

22.3. Rework Process Condition (using Heater Gun)

Bottom Heater	Recommend IR heater.
Alignment	Use magnifier for alignment. Note: it may difficult to do alignment by naked visual because MIC pad is located on soffit.
Temperature	Recommend temperature is "300°C".
Time	It is the optimized working process of 1.0 ~ 2.0mm board for 10~20sec under 300°C temp.
Nozzle	Use heater gun without nozzle
Solder/flux Process Options	 Removing the solder residue before mounting new part print Halogen-free solder paste on the SMD MIC terminals using mask → mounting 2-1. Pre-heating the solder residue before mounting new part - apply Halogen-free flux onto the land pattern
	2-2. Pre-heating the solder residue before mounting new part - apply 2 ~ 3 points of Halogen-free solder paste onto the land pattern
	 3. Highly recommendation process for rework. - After remove defect parts without Pre-heating, It is used Halogen-free flux or 2~3 points of Halogen-free solder. (It is most effective and fast for rework)

22. REWORK

22.4. Handling of Rework

- * Note 1. Follow standard guide line of SMD company for Rework Condition
- * Note 2. Rework conditions may variable by SMD companies' circumstance and working condition.
- * Note 3. Do Not reuse defect microphone by SMD process.
- * Note 4. <u>Do not employ chemical board wash or cleaning</u>, as the associated cleaning agents (such as liquid or air) can damage the device.

SPECIFICATION HISTORY

Version	Date	Comments	
1.0	Dec. 11. 18	1st Submission of Electro-Acoustical specification	
1.1	Oct. 02. 19	Extend of clock frequency range	

Best sound electronics Value no1. Micro sound provider

Address

Contact

193, Namdongseo-ro, Namdong-gu, Incheon, South Korea

TEL: +82-32-500-1700~7 FAX: +82-32-554-6205~6

ttp://www.bsecm.com