

BSE^{CON} Digital MEMS Microphone

DATA SHEET

F4-(A)HDMOE-J098R26-5P

F4-(A)HDMOE-J098R26-5P

High SNR / Multiple Clock Mode / Narrow Sensitivity

> OMNI-DIRECTIONAL BOTTOM PORT

Best sound electronics Value no1. Micro sound provider

Creative technology starts from respecting of life of the individuals

A A AVAVAVA

Creative technologies to respect human lif

Best sound electronics Value not. Micro sound provider

We offer you happiness with our excellent technology beyond an ordinary sound what you expect

Superior technology to deliver happinesi

Keep basic fundamentals to fill sound with new innovations

Creative technologies to respect human life

1. INTRODUCTION

- Digital MEMS Microphone 1/2 Cycle PDM 16bit, Full Scale=120dBSPL
- Bottom Port Type Sensitivity is Typical -26dBFS at LPM and STM
- High Signal to Noise Ratio(SNR) Typical 64.5dB (A-weighted, 20Hz~20Hz) at fclk=2.4Mz
- Multiple Clock Mode Stand by Mode, Low-Power Mode(LPM), Standard Mode(STM)
- <u>Narrow Sensitivity +/-1dB</u>
- Omni-directional
- Dual Channel supported
- RF Shielded with embedded Capacitor
- Compatible with Sn/Pb and Halogen-free solder process
- RoHS compliant
- SMD reflow temperature of up to 260°C for over 30 seconds

2. APPLICATIONS

- Smartphones
- Ear-sets, Bluetooth Headsets
- Smart Speaker, Set Top Box
- Tablet Computers
- Wearable Devices
- Electrical Appliances
- Voice Recognition Systems of Appliances

3. MODEL NO.

F4-(A)HDMOE-J098R26-5P

4. ABSOLUTE MAXIMUM RATINGS

Parameter	Absolute maximum rating	Units
Vdd , Data to Ground	3.6	V
Clock to Ground	3.6	V
Select to Ground	3.6	V
Input Current	2	mA
Short Circuit Current to/from Data	Infinite to Ground or Vdd	sec

Caution : Stresses above those listed in "Absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation at these or any other conditions beyond those indicated under "ELECTRO-ACOUSTIC CHARACTERISTICS" is not implied. Exposure beyond those indicated under "ELECTRO-ACOUSTIC CHARACTERISTICS" for extended periods may affect device reliability.

5. GENERAL MICROPHONE SPECIFICATIONS

Test Condition : 23 \pm 2°C, Room Humidity = 55 \pm 20 %, Vdd=1.8V, fclk = 2.4^{Mz}, SELECT Pin is grounded, CLOAD = 1 μ F, unless otherwise noticed

Parameter		Conditions	Min	Тур	Max	Units
* Clock	Stand by Mode	Max. Tolerance $\pm 5\%$	0	-	350	kHz
Frequency	Low-Power Mode	Generally at $\pm 10\%$ of typical value	450	768	850	kHz
Kange	Standard Mode		1.536		3.072	MHz
Standby Mode	e Current	fclk < 350 ^{kHz}	-	25	50	Aц
Short Circuit (Current	Grounded DATA pin	1	-	20	mA
Clock off Mode Current		Clock pulled low	-	<1	35	Aц
Vdd Ramp-up Time (Power-up)		Vdd ≥ Vdd (min)	-	-	50	ms
Startup Time		Time to start up in any mode after VDD and CLOCK applied	-	-	50	ms
Reset Time		Time to start up in any mode after VDD has been off for more than10ms, while CLOCK remained on	-	-	50	ms
Mode-Change	e Time	Time to switch between modes. VDD remains on during the mode switch	-	-	50	ms

* Note : Must be consulted when used another clock frequency without the typical clock frequencys.

6. ELECTRO-ACOUSTIC CHARACTERISTICS

Test Condition : 23 \pm 2°C, Room Humidity = 55 \pm 20 %, Vdd=1.8V, fclk = 2.4^{Mz}, SELECT Pin is grounded, CLOAD = 1 μ F, unless otherwise noticed

Parameter	Conditions		Тур	Max	Units	
Directivity		Om	ni-directi	onal		
Supply Voltage (Vdd)		1.62	-	3.6	V	
Sensitivity Change across Voltage	Vdd=1.62~3.6V, fclk=2.4 ^{MHz}	٦	lo chang	e	dB	
Data Format		1∕₂ Су	cle PDM	16bit	-	
Full Scale Acoustic Level			120		dBSPL	
	$fclk = 1.536^{MHz}$, load on DATA output		590			
Current Consumption (Idd)	fclk = 2.4 ^{MHz} , load on DATA output		740		Aц	
	$fclk = 3.072^{MHz}$, load on DATA output		860			
Roll Off Frequency	-3dB at 1KHz		100		Hz	
Standard Mode						
Test Conditions : Measuren	nent Clock Frequency=2.4MHz, Vdd=1.	.8V				
Sensitivity	94dB SPL at 1 ^{kHz}	-27	-26	-25	dBFS	
Signal to Noise Ratio (SNR)	94dBSPL at 1 ^{kHz} , A-weighted ($20^{Hz} \sim 20^{kHz}$)	-	64.5	-	dB(A)	
Signal to Noise Ratio(Voice Band)	94dBSPL at 1 ^{kHz} , A-weighted (20 ^{Hz} \sim 8 ^{kHz})		65.5		dB(A)	
Equivalent Input Noise (EIN)	94dBSPL at 1 ^{kHz} , A-weighted ($20^{Hz} \sim 20^{kHz}$)	-	29.5	-	dB(A)SPL	
	94dBSPL at 1 ^{kHz}	-	-	0.4	%	
Total Harmonic Distortion	103dBSPL at 1 ^{kHz}	-	-	1.0	%	
(THD)	112.5dBSPL at 1 ^{kHz}	-	-	3.0	%	
	117dBSPL at 1 ^{kHz}	-	-	5.0	%	
Acoustic Overload Point (AOP)	THD>10%, at 1 ^{kHz}	120	121	-	dBSPL	
Power Supply Rejection Raito (PSRR)	Measured with 1 ^{kHz} sine wave and broad band noise, both 200mVpp	-	52	-	dBV/FS	
Power Supply Rejection (PSR)	Measured with 217 ^{Hz} square wave and broad band noise, both 100mVpp, A-weighted	-	-84	-	dBFS(A)	
Low Power Mode						
Test Conditions : Measuren	nent Clock Frequency=768kHz, Vdd=1.	8V				
Current consumption (Idd)	load on DATA output		280		Αц	
Sensitivity	94dB SPL at 1 ^{kHz}	-27	-26	-25	dBFS	
Signal to Noise Ratio (SNR)	94dBSPL at 1^{kHz} , A-weighted ($20^{Hz} \sim 8^{kHz}$)	-	63.5	-	dB(A)	
Equivalent Input Noise (EIN)	94dBSPL at 1^{kHz} , A-weighted ($20^{\text{Hz}} \sim 8^{\text{kHz}}$)	-	30.5	-	dB(A)SPL	
	94dBSPL at 1 ^{kHz}	-	-	0.4	%	
Total Harmonic Distortion	103.5dBSPL at 1 ^{kHz}	-	-	1.0	%	
(THD)	112.5dBSPL at 1 ^{kHz}	-	-	3.0	%	
	116.5dBSPL at 1 ^{kHz}	-	-	5.0	%	
Acoustic Overload Point (AOP)	THD>10%, at 1 ^{kHz}	119	120	-	dBSPL	
Power Supply Rejection Raito (PSRR)	Measured with 1 ^{kHz} sine wave and broad band noise, both 200mVpp	-	52	-	dBV/FS	
Power Supply Rejection (PSR)	Measured with 217 ^{Hz} square wave and broad band noise, both 100mVpp, A-weighted	-	-84	-	dBFS(A)	

* Note : A 1uF bypass capacitor should be placed close to the microphone's VDD pin to ensure best SNR performance

Value no1. Micro sound provider

BSE Best sound electronics

V1.0

7. INTERFACE PARAMETER

Parameter	Conditions	Min	Тур	Мах	Units
Clock Frequency	Min. tolerance $\pm 5\%$	0.35	-	3.3	MHz
Stand by Clock Frequency	Max. tolerance $\pm 5\%$	-	-	350	kHz
	fclk <= 3.072MHz	40	-	60	04
	fclk > 3.072MHz	48	-	52	%
Input Logic Low Level		-0.3	-	0.35 x Vdd	V
Input Logic High Level		0.65 x Vdd	-	Vdd + 0.3	V
Hysteresis Width		0.1 x Vdd	-	0.29 x Vdd	V
Output Logic Low Level		-	-	0.3 x Vdd	V
Output Logic High Level		0.7 x Vdd	-	-	V
Output Load Capacitance on DATA		-	-	200	pF
Clock Rise / Fall Time		-	-	13	ns
Delay Time for Data driven	Delay time from CLOCK edge(50% VDD) to DATA driven	40	-	80	ns
Delay Time for High Z	Delay time from CLOCK edge(50% VDD) to DATA high impedance state	5	-	30	ns
Delay Time for Valid Data	Delay time from CLOCK edge(0.50 x VDD) to DATA valid(<0.30 x VDD or >0.70 x VDD) Rload, min = $100k\Omega$ Cload, max = $100pF$	-	-	100	ns

8. MEASUREMENT CIRCUIT

9. PIN DESCRIPTION

Pin Name	Description	
Vdd	Supply and IO voltage for the microphone	
L/R Select	Left/Right (DATA2 / DATA1) Channel selection	
CLOCK	Clock input to the microphone	
DATA	PDM data output from the microphone	
GND	Ground	

10. INTERFACE CIRCUIT & CHANNEL DATA CONFIGURATION

Note 1 : Stereo operation is accomplished by connecting the L/R Sel. pin either to Vdd or GND on the phone PWB. Bypass Capacitors near each MIC. on Vdd are recommended to provide maximum SNR performance.

- Note 2 : R1(Data source termination Resister) should be as close as possible to each the MIC. ($50\Omega \sim 100\Omega$)
- Note 3 : R2(Clock source termination Resister) should be as close as possible to the CODEC. (50 Ω ~100 Ω)

Value no1. Micro sound provider

11. INTERFACE TIMING CHART

12. ENVIRONMENTAL CHARACTERISTICS AND STANDARD CONDITIONS

Item	Min	Тур	Max	Unit
Operating temperature range	-40	-	+100	°C
Storage temperature range	-40	-	+100	°C
Relative humidity	25	-	85	%
Air Pressure	860	-	1060	mBar
Standard temperature range	15	20	25	°C
Standard Relative humidity	40	-	60	%

13. TYPICAL FREQUENCY RESPONSE CURVE

Far Field Measurement Condition

Temperature : $23 \pm 2 \degree C$

- Supply Voltage : 1.8V
- Clock Frequency : 2.4MHz

Acoustic stimulus : 1Pa (94dB SPL at 1kHz) at 50 cm from the loud-speaker.

The loud-speaker must be calibrated to make a flat frequency response input signal. The frequency response of microphone unit measured at 50m from the loud-speaker

Position :

Figure 1. Typical Frequency Response, Normalized to $1\,\mbox{kHz}$

Frequency Mask Specification

Figure 4. Typical Power Supply Rejection (PSR) vs. Frequency, Standard and Low-Power Modes

Frequency [Hz]	Lower Limit [dBr]	Upper Limit [dBr]	Note
50	-4	+2	
100 ~1000	-2	+2	
1000	0	0	$OdBr = dBFS at 1^{kHz}$
1000 ~ 5000	-2	+2	
10000	-2	+5	
15000	-2	+8	

Note : Band Frequency Range

1. Narrow Band : 300Hz ~ 3.4kHz

2. Wide Band : 100Hz ~ 7kHz

3. Super Wide Band : 50Hz ~ 14kHz

14. MECHANICAL CHARACTERISTICS

% PCB design & Pin size can be changed by model No.

SMD Type

Lettering

14. MECHANICAL CHARACTERISTICS

- Mechanical dimensions & Pad Lay-out

TOP VIEW

SIDE VIEW

BOTTOM VIEW

ltem	Dimension	Tolerance (+/-)	Units
Length (L)	3.50	0.10	mm
Width (W)	2.65	0.10	mm
Height (H)	0.98	0.10	mm
Acoustic Port (AP)	Φ 0.325	0.05	mm

Pin #	Pin Name	Туре	Description
1	DATA	Digital O	PDM data output
2	L/R	L/R Select	Left/Right channel selection
3	GND	Ground	Ground
4	CLK	Clock	Clock input
5	VDD	Power	Supply and I/O voltage

Note : All ground Pins must be connected to ground. "3"Pin must be sealed by solder paste on the PWB. General Tolerance ± 0.08 mm.

14. MECHANICAL CHARACTERISTICS

- Recommended Land Pattern & Stencil Pattern

F4-(A)HDMOE-J098R26-5P V1.0

15. PACKAGING SPECIFICATION

BSE Best sound electronics

15. PACKAGING SPECIFICATION

- Taping

DETAIL B (2:1)

[Note]

Ø1.5+0.1

- 1. Direction of parts : See above pictures.
- 2. Microphone total quantity (13" Reel) : 5,000pcs
- 3. Carrier Tape ESD : $10^2 \sim 10^{10} \Omega$
- 4. Cover Tape Inside ESD : $10^2 \sim 10^{10} \Omega$
- 5. Carrier Tape Material & Color : PS, Black
- 6. Thermo Compression Bonding

Unit : mm

9.3

	A0	3.80±0.10	Е	1.75±0.10
	B0	2.95±0.10	F	5.50±0.05
	K0	1.25±0.10	т	0.30±0.05
2	D0	1.50±0.10	W	12.00±0.30

15. PACKAGING SPECIFICATION

- Packing

16. RELIABILITY TEST CONDITIONS

Note : After test conditions are performed, the sensitivity of the microphone shall not deviate more than $\pm 1 dB$ from its initial value.					
TEST	DESCRIPTION				
TEMPERATURE	[High Temperature Storage] +80°C±3°C x 200hrs (The measurement to be done after 2 hours of conditioning at room temperature)				
STORAGE	[Low Temperature Storage] $-30^{\circ}C \pm 3^{\circ}C \times 200$ hrs (The measurement to be done after 2 hours of conditioning at room temperature)				
TEMPERATURE CYCLE	$(-25^{\circ}C \pm 2^{\circ}C \times 30 \text{min} \rightarrow +20^{\circ}C \pm 2^{\circ}C \times 10 \text{min} \rightarrow +70^{\circ}C \pm 2^{\circ}C \times 30 \text{min} \rightarrow +20^{\circ}C \pm 2^{\circ}C \times 10 \text{min}) \times 5 \text{ cycles}$ (The measurement to be done after 2 hours of conditioning at room temperature)				
THERMAL SHOCK	$(+85^{\circ}C\pm 2^{\circ}C -> -40^{\circ}C\pm 2^{\circ}C$ change time : 20sec) x 96 cycles Maintain : 30 min (The measurement to be done after 2 hours of conditioning at room temperature)				
HIGH	+85°C \pm 2, 85 \pm %RH, Bias(3.6V) x 200hrs (The measurement to be done after 2 hours of conditioning at room temperature)				
AND HUMIDITY	+70°C \pm 2, 95 \pm %RH x 200hrs (The measurement to be done after 2 hours of conditioning at room temperature)				
ESD	Air discharge : $\pm 8kV$, $\pm 10kV$, $\pm 12kV$, $\pm 15kV$ Vdd, Data, CLK, L/R, GND Pad each 5 times (Non-ground)				
Discharge)	Contact discharge : $\pm 2kV$, $\pm 4kV$, $\pm 6kV$, $\pm 8kV$ Vdd, Data, CLK, L/R, GND Pad each 5 times (Non-ground)				
VIBRATION	Signal 5Hz to 500Hz, acceleration spectral density of 0.01g ² /Hz in each of 3 axes, 120 min in each axis (360min in total)				
DROP	DROPTo be no interference in operation after dropped to steel floor 18 times from 1.52 meter height in state of packing				
REFLOW SENSITIVITY	5 reflow cycles. Refer to reflow profile from specification item 18.				

17. TEMPERATURE CONDITIONS (Maximum Ratings)17.1 STORAGE TEMPERATURE : -40°C~ +100°C

17.2 OPERATING TEMPERATURE : -40℃~ +100℃

BSE Best sound electronics

V1.0

18. MEASUREMENT SYSTEM

18.1 Measurement Condition

- (a) Supply voltage : 1.8V
- (b) Clock Frequency : 768kHz, 2.4 MHz
- (c) Acoustic stimulus : 94dB SPL at 1kHz
- (d) Distance between MIC & SPK : 50 cm
- (e) Measurement frequency : 50 (Hz) \sim 20 (kHz)

Machine	Model No	Purpose
Standard MIC	4191	Revision of input signal & SPK spec
Audio Analyzer	APX525	Audio Analysis (include Power Supply)
Loud-speaker	GRF Memory HE	SPK (Input sound Signal occur)
Power Amplifier	2716C	Power amplification
Charging Conditioning Amplifier	2690	Ref. MIC Signal Transformation
Operating Software	APx500 4.4	A-D Freq. Resp.
Sound Level Calibrator	4231	Standard MIC Calibration purpose

19. SOLDER REFLOW PROFILE

Time(ts) from (Tsmin to Tsmax)	60 ~ 120 seconds
Ramp-up rate (TL to Tp)	3°C/second max.
Liquidous temperature(TL) Time(tL) maintained above TL	217℃ 60 ~ 150 seconds
Peak package body temperature (Tp)	260°C
Time(tp) within 5°C of the specified classification Temperature(Tc)	20 ~ 40 seconds
Ramp-down rate (Tp to TL)	6°C/second max.
Time 25℃ to peak temperature	8 minutes max.

[Notes]

- 1. Solder Reflow Profile based on IPC/JDEC J-STD-020 Revision D.
- 2. Do not pull a vacuum over the port hole of the microphone. Pulling a vacuum over the port hole can damage the device.
- 3. Do not board wash after the reflow process. Board washing and cleaning agents can damage the device. Do not expose to ultrasonic processing or cleaning.
- 4. Recommend no more than 5 cycles.
- 5. Shelf life : Twelve(12) months when devices are to be stored in factory supplied, unopened ESD moisture sensitive bag under maximum environmental condition of 30°C, 70% R.H.
- 6. Exposure : Devices should not be exposed to high humidity, high temperature environment. MSL (Moisture sensitivity level) Class 1.
- 7. Out of bag : Maximum of 90 days of ESD moisture sensitive bag, assuming maximum conditions of 30°C, 70% R.H.

F4-(A)HDMOE-J098R26-5P

V1.0

20. RECOMMENDED PICK-UP NOZZLE CONDITIONS

19.1. Nozzle material : Metal or Rubber, Etc.

19.2. Case Weight

- If tool outer size is bigger than MIC. : Max. 10N
- If tool outer size is smaller than MIC. : Max. 4N

19.3. Nozzle position : MIC. Center

- Nozzle inner diameter size : Max. Ø1.5

-Max. Φ1.50(Nozzle inner diameter)

21. APPLICATION EXAMPLE

Gasket compression range for sealing $\rightarrow 0.5 \pm 0.2$ mm

Rubber thickness (mm)

SPECIFICATION HISTORY

Version	Date	Comments
1.0	Feb 6. 20	1 st Submission of Electro-Acoustical specification
	1	

Best sound electronics Value no1. Micro sound provider

Address

193, Namdongseo-ro, Namdong-gu, Incheon, South Korea

Contact

TEL: +82-32-500-1700~7 FAX: +82-32-554-6205~6

Value no1. Micro sound provider