
EVERLIGHT

DATASHEET

Dual-Channel Isolated Gate Driver CE21550X-G Series

Features:

- Compliance Halogens Free
- (Br < 900 ppm, Cl < 900 ppm, Br+Cl < 1500 ppm)
- 3V to 5.5V Input VCCI Range to Interface with Both Digital and Analog Controllers
- Up to 25V VDD Output Drive Supply
- Programmable Overlap and Dead Time
- Wide temperature range: -40°C to 125°C

Description

The CE21550X has a source peak current of 4A and a sink peak current of 8A. The maximum switching frequency can reach 5MHz. It is suitable for gate driver of MOSFET, IGBT and SiC MOSFET.

Every driver can be configured as two low-side drivers, two high-side drivers, or a half-bridge driver with programmable dead time (DT). A DISABLE pin shuts down both outputs simultaneously when it is set high and allows normal operation when left open or grounded. As a fail-safe measure, primary-side logic failures force both outputs low.

Applications

- HEV and BEV Battery Chargers
- Isolated Converters in DC-DC and AC-DC Power Supplies
- · Server, Telecom, IT, and Industrial Infrastructures
- Motor Drive and DC-AC Solar Inverters
- LED Lighting
- Inductive Heating
- Uninterruptible Power Supply (UPS)

Pin Description

			Pin	Symbol	Description
1 INA 2 INB	VDDA OUTA	16 15	1	INA	Input signal for A channel. INA input has a TTL/CMOS compatible input threshold. This pin is pulled low internally if left open. It is recommended to tie this pin to ground if not used to achieve better noise immunity.
3 VCC1 4 GND			2	INB	Input signal for B channel. INB input has a TTL/CMOS compatible input threshold. This pin is pulled low internally if left open. It is recommended to tie this pin to ground if not used to achieve better noise immunity.
			3,8	VCC1	Primary-side supply voltage.
5 DISABLE			4	GND	Primary-side ground reference.
6 DT 7 NC 8 VCC1	VDDB OUTB VSSB	11 10 9	5	DISABLE	Disables both driver outputs if asserted high, enables if set low or left open. This pin is pulled low internally if left open. If this pin is not used, it is recommended to ground this pin to obtain better noise immunity. When connecting to a microcontroller, use a low ESR/ESL capacitor of approximately 1nF to bypass the DIS pin.
0.1μF capacitor GND.		 1	6	DT	Programmable dead time function. Tying DT to VCCI allows the outputs to overlap. Leaving DT open sets, the dead time to <15 ns. Placing a 500Ω to $500k\Omega$ resistor (RDT) between DT and GND adjusts dead time according to: DT(ns) \approx 10 x RDT(k Ω).
1µF capacitor f VDDB to VSSA			7	NC	No connection.
			9	VSSB	Ground for secondary-side driver B.
		10	OUTB	Output of driver B.	
		11	VDDB	Secondary-side power for driver B.	
		14	VSSA	Ground for secondary-side driver A.	
		15	OUTA	Output of driver A.	
			16	VDDA	Secondary-side power for driver A.

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC1}	7	V
Input signal voltage	V _{IN}	Vcc1+0.5	V
Driver bias supply	Vdd	30	V
Maximum Output Voltage	V _{OUT}	V _{DD} +0.5	V
Isolation Voltage *1	V _{ISO}	5000	V rms
Operating Temperature	T _{OPR}	-40 ~ +125	°C
Storage Temperature	T _{STG}	-55 ~ +150	°C
Soldering Temperature *2	T _{SOL}	260	°C

Notes:

*1 AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1 to 8 are shorted together, and pins 9 to 16 are shorted together.

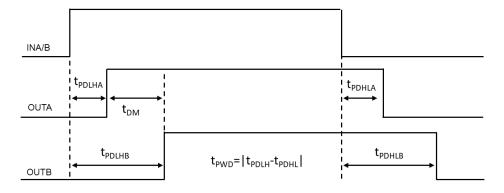
*2 For 10 seconds.

*3 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter		Symbol	Min	Max	Unit
Input Supply Voltage		V _{CC1}	3	5.5	V
	CE21550A		6.5	25	V
Output Supply Voltage	CE21550B	V _{DD} -	9.2	25	V
Input voltage		V _{IN}	0	V _{CC1}	V
Output voltage		Vo	0	V _{DD}	V

Electro-Optical Characteristics


Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
	Ivccı		0.5	1.1	mA	$V_{INX} = 0V$
Quiescent Current	Ivddx		0.9	1.5	mA	V _{INX} = 0V
	Ivcci		0.9		mA	V _{INX} f=500kHz, 50% duty
Operating Current	Ivddx		2.2		mA	cycle
UVLO Rising Threshold	V _{VCCI_ON}	2.55	2.7	2.85	V	
UVLO Falling threshold	Vvcci_off	2.35	2.5	2.65	V	
Threshold hysteresis	Vvcci_hys		0.2		V	
UVLO Rising threshold	V_{VDDX_ON}	5.7	6.1	6.5	V	
UVLO Falling threshold	Vvddx_off	5.4	5.8	6.2	V	 CE21550A
UVLO Threshold hysteresis	V _{VDDX_HYS}		0.3		V	_
UVLO Rising threshold	Vvddx_on	8.3	8.7	9.2	V	
UVLO Falling threshold	Vvddx_off	7.8	8.2	8.7	V	CE21550B
UVLO Threshold hysteresis	Vvddx_hys		0.5		V	
Input high threshold voltage	V _{INX_H} Vdis_h	1.6	1.8	2	V	
Input low threshold voltage	V _{INX_L} Vdis_l	0.8	1	1.2	V	
Input threshold hysteresis	Vinx_hys Vdis_hys		0.8		V	
Peak output source current	lo+		4		А	$C_{VDD} = 10\mu F,$ $C_{LOAD} = 0.68\mu F,$
Peak output sink current	lo-		8		А	f = 100Hz, bench measurement
Output resistance at high state	Rон		1		Ω	I _{OUT} = -10 mA
Output resistance at low state	Rol		0.4		Ω	I _{OUT} = 10 mA
Output voltage at high state	V _{OH}		11.99		V	V _{DDX} = 12 V, I _{OUT} = -10 mA
Output voltage at low state	Vol		4		mV	$V_{DDX} = 12 V,$ $I_{OUT} = 10 mA$
		Over	lap determir INA INB	ned by	ns	Pull DT pin to VCCI
Dead time	DT	0	8	15	ns	DT pin is left open
		150	200	250	ns	R _{DT} = 20 KΩ

 $V_{CC1} = 3.3V$ or 5V, $T_A = 25^{\circ}C$, $V_{DDA} = V_{DDB} = 12$ V, unless otherwise noted.

Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
Output rise time	tr		7	18	ns	$C_{OUT} = 1.8 nF$
Output fall time	t _f		8	12	ns	C _{OUT} = 1.8nF
Minimum pulse width	t _{PWmin}		10	20	ns	Output off for less than minimum, Cout = 0pF
Propagation delay Low to High	t PDHL	14	19	30	ns	
Propagation delay High to Low	t PDLH	14	19	30	ns	
Pulse width distortion	t PWD			5	ns	
Propagation delays matching between Vouta, Voutb	tом			5	ns	f = 100kHz
High-level common-mode transient immunity	CM _H		100		kV/us	V _{CM} =1000V;
Low-level common-mode transient immunity	CM∟		100		kV/us	V _{CM} =1000V;

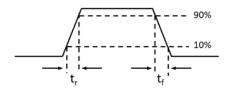
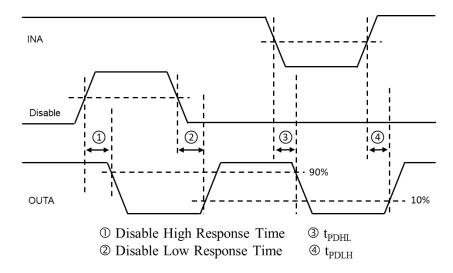

 V_{CC1} = 3.3V or 5V, T_A=25°C, V_{DDA} = V_{DDB} = 12 V, unless otherwise noted.

Fig. 1 Overlapping inputs, Dead Time Disable



shows how to calculate pulse width distortion(t_{PWD}) and delay matching (t_{DM}) from the propagation delays of channels A and B. It can be measured by ensuring that both inputs are in phase and disabling the dead time function by shorting the DT Pin to V_{CC1} .

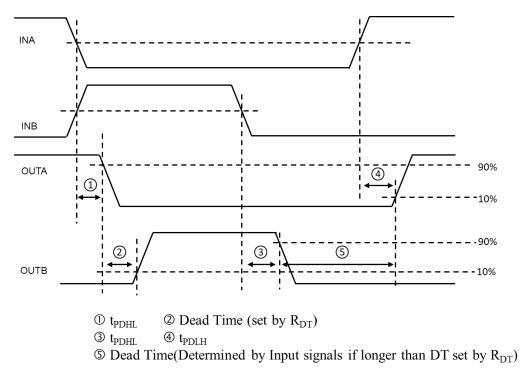

Fig.2 Rising and Falling Time

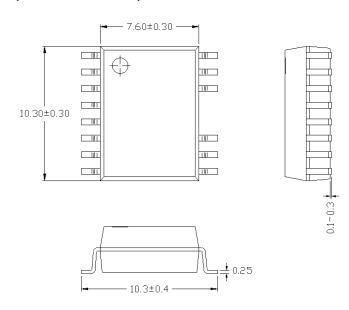
Fig.3 Input and Disable Response Time

Fig.4 Programmable Dead Time

Leaving the DT pin open or tying it to GND through an appropriate resistor (RDT) sets a dead-time interval.

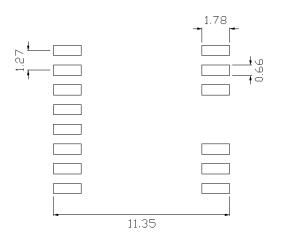
Order Information

Part Number

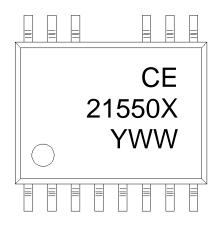

CE21550X(TA)-G

Note

CE	=	denotes EVERLIGHT
21550	=	part no.
Х	=	VDD Supply Min.
		A: 6.5V
		B: 9.2V
G	=	Halogens free


Option	Description	Packing quantity
(TA)	Surface mount lead form + TA tape & reel option	1500 units per reel

Package Dimension (Dimensions in mm)


Recommended pad layout for surface mount leadform

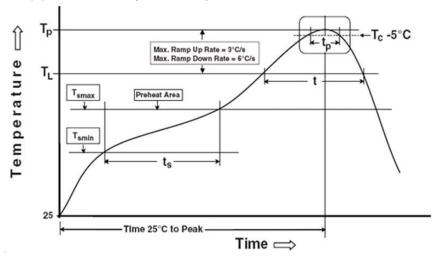
Notes.

Suggested pad dimension is just for reference only. Please modify the pad dimension based on individual need.

Device Marking

Notes

CE	denotes EVERLIGHT
21550X	denotes Device Number
Y	denotes 1 digit Year code
WW	denotes 2 digit Week code



Reference: IPC/JEDEC J-STD-020D

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note:

Preheat

Temperature min (T _{smin})	150 °C
Temperature max (T _{smax})	200°C
Time (T_{smin} to T_{smax}) (t_s)	60-120 seconds
Average ramp-up rate $(T_{smax} to T_p)$	3 °C/second max
Other	
Liquidus Temperature (T _L)	217 °C
Time above Liquidus Temperature (t ∟)	60-100 sec
Peak Temperature (T _P)	260°C
Time within 5 °C of Actual Peak Temperature: T_{P} -5°C	30 s
Ramp- Down Rate from Peak Temperature	6°C /second max.
Time 25°C to peak temperature	8 minutes max.
Reflow times	3 times

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 3. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.
- 6. Statements regarding the suitability of products for certain types of applications are based on Everlight's knowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Everlight's terms and conditions of purchase, including but not limited to the warranty expressed therein.