

MULTI-INNO TECHNOLOGY CO., LTD.

www.multi-inno.com

LCD MODULE SPECIFICATION

Model : MI0350AGT-3

This module uses ROHS material

For Customer's Acceptance:

Customer		
Approved		
Comment		

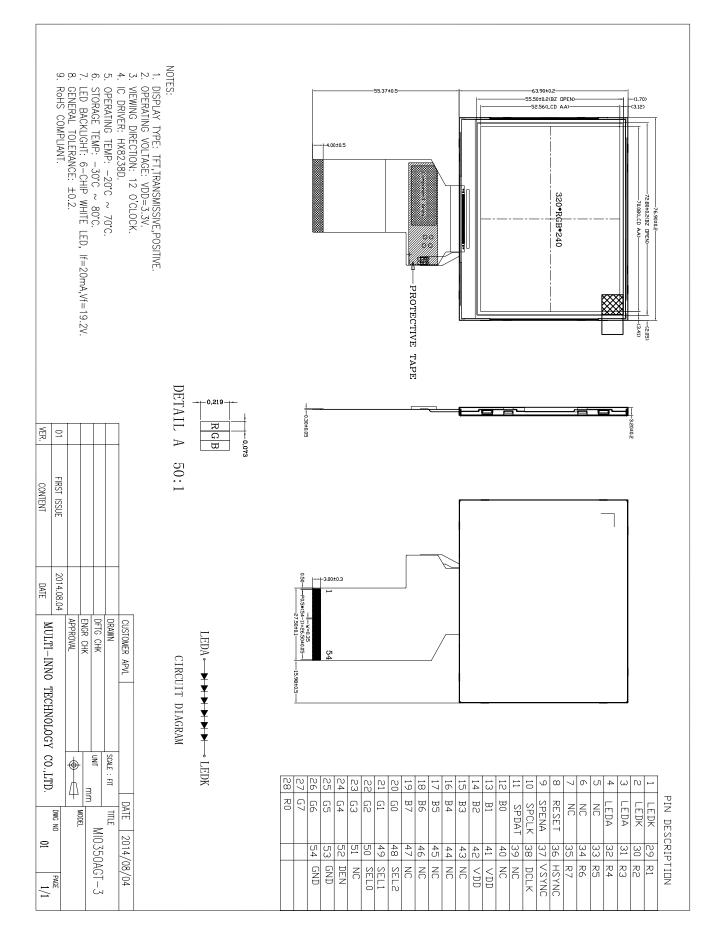
This specification may change without prior notice in	Revision	1.1
order to improve performance or quality. Please contact	Engineering	
Multi-Inno for updated specification and product status	Date	2014-08-04
before design for this product or release of this order.	Our Reference	

REVISION RECORD

REV NO.	REV DATE	CONTENTS	REVISED PAGE NO.
1.0	2014-06-23	First Release	
1.1	2014-08-04	Correct surface luminance from 600(min) & 700(typ) to 650(min) & 800(typ)	P.7

CONTENTS

- GENERAL INFORMATION
- EXTERNAL DIMENSIONS
- ABSOLUTE MAXIMUM RATINGS
- ELECTRICAL CHARACTERISTICS
- BACKLIGHT CHARACTERISTICS
- ELECTRO-OPTICAL CHARACTERISTICS
- INTERFACE DESCRIPTION
- BLOCK DIAGRAM
- APPLICATION NOTES
- RELIABILITY TEST
- INSPECTION CRITERION
- PRECAUTIONS FOR USING LCD MODULES
- PRIOR CONSULT MATTER


■ GENERAL INFORMATION

Item	Contents	Unit
LCD type	TFT/Transmissive/Positive	/
Size	3.5	Inch
Viewing direction	12:00(without image inversion and least brightness	O' Clock
	change)	
Gray scale inversion direction	6:00(contrast peak located at)	O'Clock
$LCM(W \times H \times D)$	76.90×63.90×3.27	mm ³
Active area (W×H)	70.08×52.56	mm^2
Pixel pitch (W×H)	0.219×0.219	mm^2
Number of dots	320 (RGB) × 240	/
Driver IC	HX8238D	/
Backlight type	6 LEDs	/
Interface type	24 bit RGB/ Serial RGB/CCIR/YUV	/
Color depth	16.7M	/
Pixel configuration	R.G.B vertical stripe	/
Input voltage	3.3	V
With/Without TSP	Without TSP	/
Weight	29.3	g

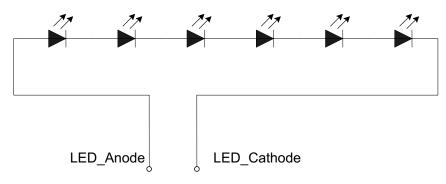
Note 1: RoHS compliant; Note 2: LCM weight tolerance: $\pm 5\%$.

EXTERNAL DIMENSIONS

■ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit
Supply voltage	VDD	-0.3	4.0	V
Input voltage for logic	VDDIO	-0.5	VCC+3.0	V
Operating temperature	Тор	-20	70	°C
Storage temperature	Тѕт	-30	80	°C
Humidity	RH	-	90%(Max60°C)	RH

ELECTRICAL CHARACTERISTICS


DC CHARACTERISTICS

Parameter	Symbol	Min	Тур	Max	Unit
Supply voltage	VDD	2.6	3.3	3.6	V
Input voltage ' H ' level	VIH	0.8VDD	-	VDD	V
Input voltage ' L ' level	Vil	GND	-	0.2VDD	V
Output voltage ' H ' level	Voh	0.8VDD	-	VDD	V
Output voltage ' L ' level	Vol	GND	-	0.2VDD	V

■ BACKLIGHT CHARACTERISTICS

Item	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward voltage	Vf	-	19.2	20.4	V	
Forward current	If	-	20	25	mA	
Power consumption	WBL	-	384	510	mW	

Note 1: The figure below shows the connection of backlight LED.

Note 2: One LED : I_F =20 mA, V_F =3.2V

Note 3: The minimal life of LED : 20,000 hours

Item		Symbol	Condition	Min	Тур	Max	Unit	Remark	Note
Response time		Tr+Tf			50	80	ms	FIG 1.	4
Contrast r	ratio	Cr	$ \begin{array}{c c} Cr & \theta=0^{\circ} \\ \delta & \varnothing=0^{\circ} \\ WHITE & Ta=25^{\circ}C \end{array} $	200	350			FIG 2.	1
Luminar uniform		e e		75	80		%	FIG 2.	3
Surface Lum	inance	Lv		650	800		cd/m ²	FIG 2.	2
			$\emptyset = 90^{\circ}$	30	40		deg	FIG 3.	
Viewing angl	a ranga	0	$\emptyset = 270^{\circ}$	50	60		deg	FIG 3.	6
viewing angi	Viewing angle range	θ	$\varnothing = 0^{\circ}$ 50 60	60		deg	FIG 3.	0	
			$\emptyset = 180^{\circ}$	50	60		deg		FIG 3.
	Red	Х		0.609	0.639	0.669			
	Reu	у		0.314	0.344	0.374			
	Green	X	θ=0°	0.264	0.294	0.324			
CIE (x, y)	Green	у	Ø=0°	0.557	0.587	0.617		FIG 2.	5
chromaticity	Blue	X	Ta=25℃	0.102	0.132	0.162		110 2.	5
	Diuc	У	1 a-25 C	0.106	0.136	0.166			
	White	Х		0.282	0.312	0.342			
	white	У		0.319	0.349	0.379			
NTSC	-	-	-		50		%	-	-

ELECTRO-OPTICAL CHARACTERISTICS

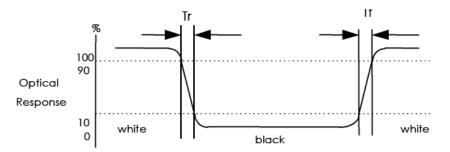
Note 1. Contrast Ratio(CR) is defined mathematically as For more information see FIG 2.

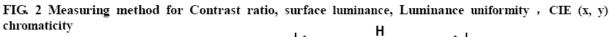
Contrast Ratio = <u>Average Surface Luminance with all white pixels (P1, P2, P3, P4, P5)</u> Average Surface Luminance with all black pixels (P1, P2, P 3, P4, P5)

Note 2. Surface luminance is the LCD surface from the surface with all pixels displaying white. For more information see FIG 2.

Lv = Average Surface Luminance with all white pixels (P1, P2, P 3, P4, P5)

Note 3. The uniformity in surface luminance δ WHITE is determined by measuring luminance at each test position 1 through 5, and then dividing the maximum luminance of 5 points luminance. For more information see FIG 2.


 $\delta \text{ WHITE} = \underbrace{\text{Minimum Surface Luminance with all white pixels (P1, P2, P 3, P4, P5)}}_{\text{Maximum Surface Luminance with all white pixels (P1, P2, P 3, P4, P5)}}$


- Note 4. Response time is the time required for the display to transition from White to black(Rise Time, Tr) and from black to white(Decay Time, Tf). For additional information see FIG 1. The test equipment is Autronic-Melchers's ConoScope. Series.
- Note 5. CIE (x, y) chromaticity, The x, y value is determined by measuring luminance at each test position 1 through 5, and then make average value.
- Note 6. Viewing angle is the angle at which the contrast ratio is greater than 2. For TFT module the conrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 3.
- Note 7. For viewing angle and response time testing, the testing data is base on Autronic-Melchers's ConoScope. Series Instruments For contrast ratio, Surface Luminance, Luminance uniformity, CIE The test data is base on TOPCON's BM-5 photo detector.

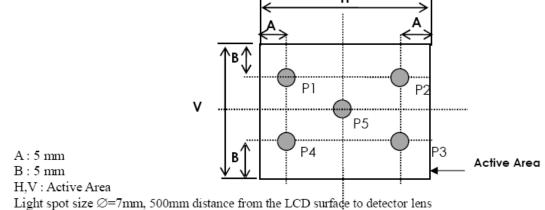
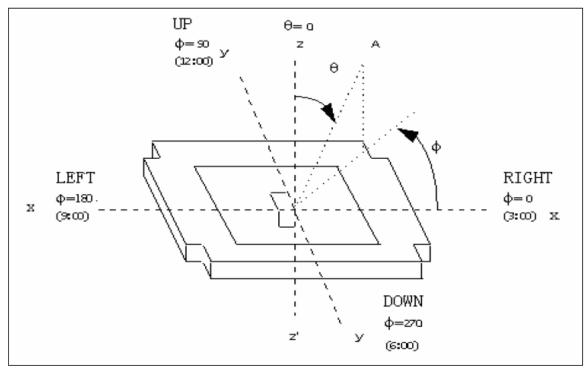


FIG. 1 The definition of Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".



measurement instrument is TOPCON's luminance meter BM-5

■ INTERFACE DESCRIPTION

Pin No.	Symbol	Description
1	LEDK	Backlight LED Ground
2	LEDK	Backlight LED Ground
3	LEDA	Backlight LED Power
4	LEDA	Backlight LED Power
5	NC	Not Use
6	NC	Not Use
7	NC	Not Use
8	/RESET	Hardware Reset
9	SPENA	SPI Interface Data Enable Signal
10	SPCLK	SPI Interface Data Clock
11	SPDAT	SPI Interface Data
12	B0	Blue Data Bit O
13	B1	Blue Data Bit 1
14	B2	Blue Data Bit 2
15	B3	Blue Data Bit 3
16	B4	Blue Data Bit 4
17	B5	Blue Data Bit 5
18	B6	Blue Data Bit 6
19	B7	Blue Data Bit 7
20	GO	Green Data BitO
21	G1	Green Data Bit1
22	G2	Green Data Bit2
23	G3	Green Data Bit3
24	G4	Green Data Bit4
25	G5	Green Data Bit5
26	G6	Green Data Bit6
27	G7	Green Data Bit7
28	RO	Red Data Bit0 /DX0
29	R1	Red Data Bit1 /DX1
30	R2	Red Data Bit2 /DX2
31	R3	Red Data Bit3 /DX3
32	R4	Red Data Bit4 /DX4
33	R5	Red Data Bit5 /DX5
34	R6	Red Data Bit6 /DX6
35	R7	Red Data Bit7 /DX7

Ver 1	1.1
-------	-----

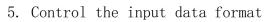
36	HSYNC	Horizontal Sync Input
37	VSYNC	Vertical Sync Input
38	DCLK	Dot Data Clock
39	NC	Not Use
40	NC	Not Use
41	VDD	Digital Power
42	VDD	Digital Power
43	NC	Not Use
44	NC	Not Use
45	NC	Not Use
46	NC	Not Use
47	NC	Not Use
48	SEL2	Control the input data format /floating
49	SEL1	Control the input data format
50	SEL0	Control the input data format
51	NC	Not Use
52	DEN	Data Enable Input
53	GND	Ground
54	GND	Ground

Note:

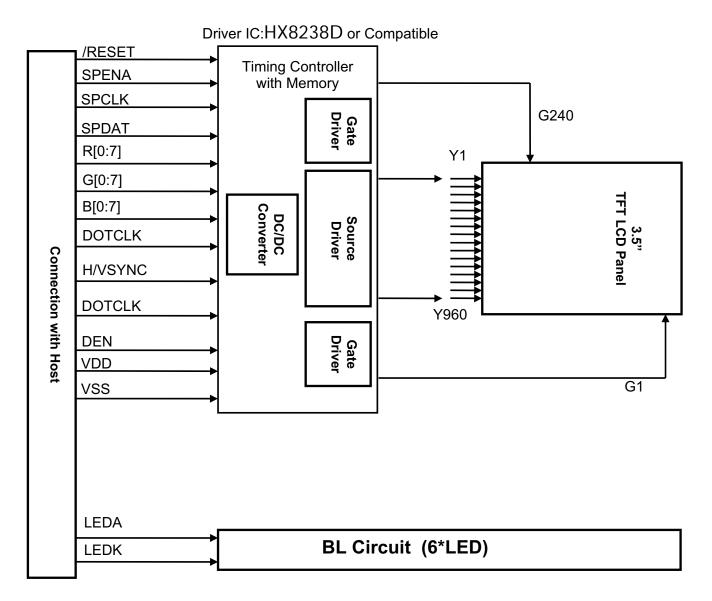
1. The mode control (SEL2) not use ,it can't control CCIR601 interface , If not use CCIR601 ,it

can floating.

2. For digital RGB input data format, both SYNC mode and DE+SYNC mode are supported. If \mbox{DE}


signal is fixed low, SYNC mode is used. Otherwise, DE+SYNC mode is used. Suggest used SYNC mode!!

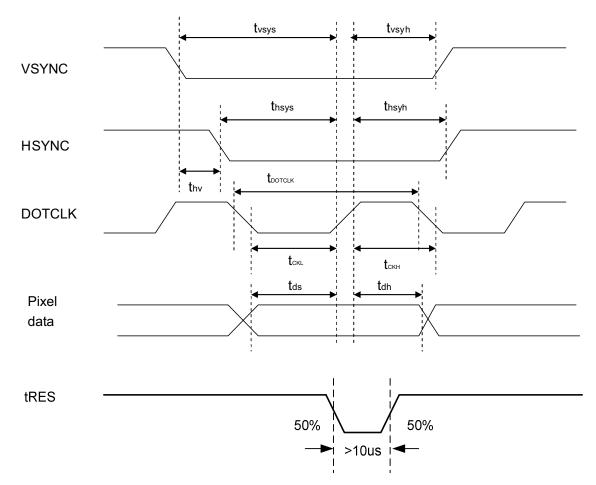
Suggest the DE signal usually pull low.


3. usually pull high.

selected serial RGB、CCIR601/656 interface,DX BUS will enable,Digital input mode DX0 is LSB and DX7 is MSB.

SEL2	SEL1	SEL0	Interface Mode			
0	0	0	Parallel-RGB Data format interface			
	0	0	(only support stripe type color filter)			
0	0	1	Serial-RGB data format			
0	1	0	CCIR 656 data format (640RGB)			
0	1	1	CCIR 656 data format (720RGB)			
1	0	0	YUV mode A data format(Cr-Y-Cb-Y)			
1	0	1	YUV mode A data format(Cr-Y-Cb-Y)			
1	1	0	YUV mode B data format(Cb-Y-Cr-Y)			
1	1	1	YUV mode B data format(Cb-Y-Cr-Y)			

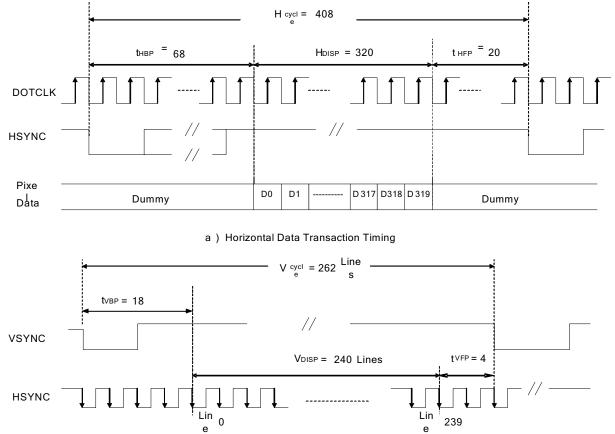
■ BLOCK DIAGRAM



■ APPLICATION NOTES

1.AC Characteristics

(Unless otherwise specified, Voltage Referenced to Vss, VDDIO = 2.2V, TA = 25° C)



Characteristics	Symbol	Min.		Тур.		Max.		Unit
Characteristics	Symbol	24 bit	8 bit	24 bit	8 bit	24 bit	8 bit	Unit
DOTCLK Frequency	fDOTCLK	-			19.5	10	30	MHz
DOTCLK Period	tDOTCLK	100	33.3	154	51.3	-	-	ns
Vertical Sync Setup Time	tvsys	20	10	-	-	-	-	ns
Vertical Sync Hold Time	tvsyh	20	20 10		-	-	-	ns
Horizontal Sync Setup Time	thsys	20	10	-	-	-	-	ns
Horizontal Sync Hold Time	thsyh	20	10	-	-	-	-	ns
Phase difference of Sync Signal Falling Edge	thv		1		-	24	10	tDOTCLK
DOTCLK Low Period	tCKL	50	15	-	-	-	-	ns
DOTCLK High Period	tCKH	50	15	-	-	-	-	ns
Data Setup Time	tds	12	10	-	-	-	-	ns
Data hold Time	tdh	12	10	-	-	-	-	ns
Reset pulse width	tRES	1	0	-	-	-	-	us

Note: External clock source must be provided to DOTCLK pin of HX8238-D. The driver will not operate if absent of the clocking signal.

Table1.1 Pixel Timing

b) Vertical Data Transaction Timing

Figure1.2 Data Transaction Timing in Parallel RGB (24 bit) Interface (SYNC Mode)

Characteristics		Symbol	Mi	n-	Ту	′p.	Ma	ax.	Unit
		Symbol	24 bit	8 bit	24 bit	8 bit	24 bit	8 bit	Unit
DOTCLK Frequency		fDOTCLK	-	-	6.5	19.5	10	30	MHz
DOTCLK Period		tDOTCLK	100	33.3	154	51.3	-	-	ns
Horizontal Frequen	icy (Line)	fH	-		14	.9	22	.35	KHz
Vertical Frequency	(Refresh)	fV	-		6	0	g	0	Hz
Horizontal Back Po	orch	tHBP	-	-	68	204	-	-	tDOTCLK
Horizontal Front Po	orch	tHFP	-	-	20	60	-	-	tDOTCLK
Horizontal Data Sta	art Point	tHBP	-	-	68	204	-	-	tDOTCLK
Horizontal Blanking	Period	tHBP + tHFP	-	-	88	264	-	-	tDOTCLK
Horizontal Display	Area	HDISP	-	-	320	960	-	-	tDOTCLK
Horizontal Cycle		Hcycle	-	-	408	1224	450	1350	tDOTCLK
Vertical Back Porch	า	tVBP	-		18		-		Lines
Vertical Front Porcl	h	tVFP	-		4		-		Lines
Vertical Data Start	Point	tVBP	-		18		-		Lines
Vertical Blanking P	eriod	tVBP + tVFP	-		22		-		Lines
Martine L Disaster NTSC					240 280(PALM=0)				
Vertical Display		VDISP	-						Lines
Area PAL					288(PALM=1)				
Vartical Cycla	NUT NTSC		-		26		2	50	Linco
Vertical Cycle	PAL	Vcycle			31	3	_ 350		Lines

Table1.2 Data Transaction Timing in Normal Operating Mode

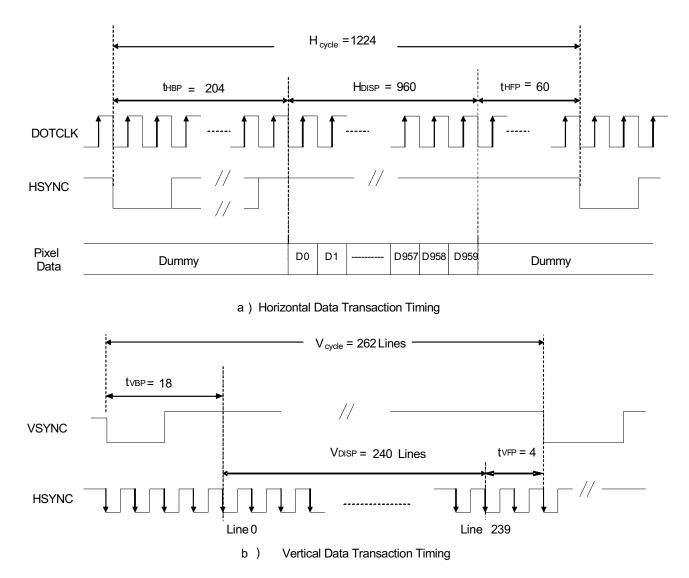
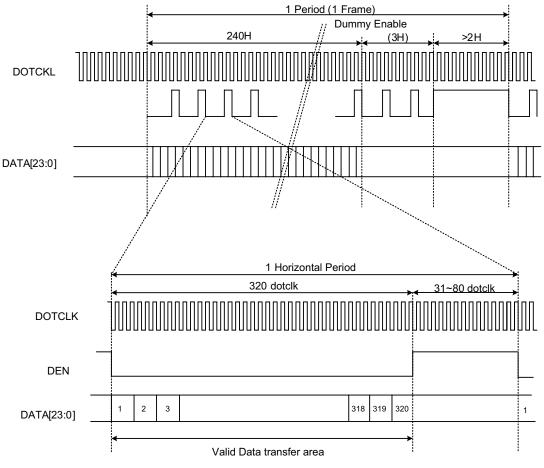
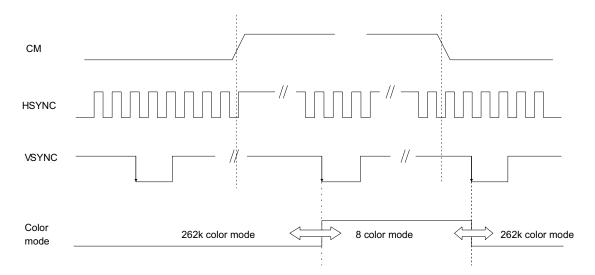




Figure 1. 3 Data Transaction Timing in Serial RGB (8 bit) Interface (SYNC Mode)

Note: The color mode conversion starts at the first falling edge of VSYNC after stage change of CM.

Figure 1.5 Color Mode Conversion Timing

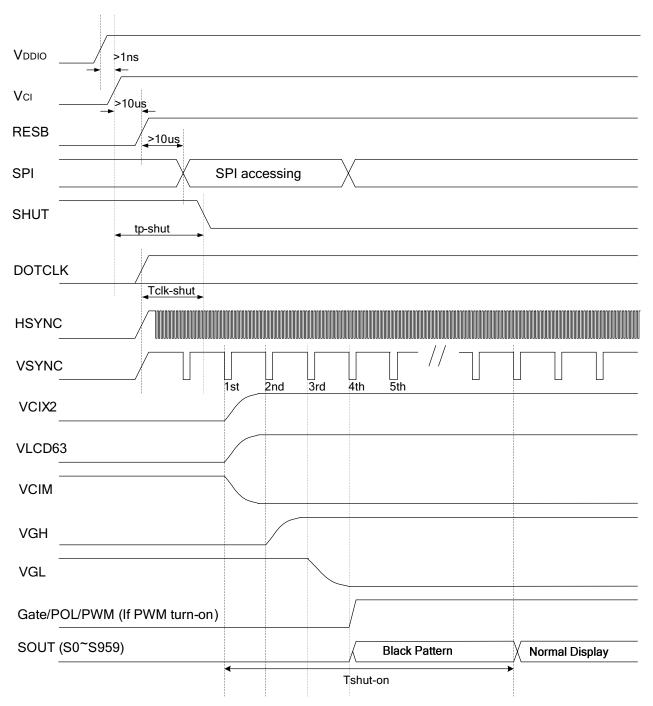
SEL[2:0]] = 100, NTSC /PAL
HSYNC	← H _{cycle} = 1560
Harne	
DOTCLK	
RR[7:0]	Invalid Data
	thep = HBP[6:0]*4+STP[1:0] Holsp = 1280
SEL[2:0]] = 101, NTSC
HSYNC	← H _{cyde} = 1716
DOTCLK	
RR[7:0]	Invalid Data
SEL[2:0]] = 101, PAL
HSYNC	← H _{cycle} = 1728
DOTCLK	
RR[7:0]	Invalid Data
SEL[2:0]] = 110, NTSC
SEL[2:0] HSYNC	H = 110, NTSC
	H _{cyde} = 1716
HSYNC	H _{cyde} = 1716
HSYNC DOTCLK	
HSYNC DOTCLK RR[7:0]	H _{cycle} = 1716 H _{cycle} = 1716
HSYNC DOTCLK RR[7:0]	H _{cycle} = 1716 H _{cycle} = 1716 //
HSYNC DOTCLK RR[7:0] SEL[2:0]	H _{cycle} = 1716 H _{cycle} = 1728 H _{cycle} = 1728
HSYNC DOTCLK RR[7:0] SEL[2:0] HSYNC	H _{cycle} = 1716 H _{cycle} = 1728 H _{cycle} = 1728
HSYNC DOTCLK RR[7:0] SEL[2:0] HSYNC DOTCLK	H _{cycle} = 1716 H _{cycle} = 1716 H _{cycle} = 1716 H _{cycle} = 1716 H _{cycle} = 1728 H _{cycle} = 1728 H _{cycle} = 1728
HSYNC DOTCLK RR[7:0] SEL[2:0] HSYNC DOTCLK RR[7:0]	H _{oyde} = 1716 H _{oyde} = 1716 H _{oyde} = 1716 H _{oyde} = 1728 H _{oyde} = 1728
HSYNC DOTCLK RR[7:0] SEL[2:0] HSYNC DOTCLK RR[7:0]	H _{cycla} = 1716 H _{cycla} = 1728 H _{cycla} = 1728
HSYNC DOTCLK RR[7:0] SEL[2:0] HSYNC DOTCLK RR[7:0] SEL[2:0]	H _{cycle} 1716 H _{cycle} 1716 H _{cycle} 1716 H _{cycle} 1716 H _{cycle} 1720 H _{bos} = 1440 H _{cycle} 1728 H _{cycl}
HSYNC DOTCLK RR[7:0] SEL[2:0] HSYNC SEL[2:0] HSYNC	H _{cycle} 1716 H _{cycle} 1716 H _{cycle} 1716 H _{cycle} 1716 H _{cycle} 1720 H _{bos} = 1440 H _{cycle} 1728 H _{cycl}

Figure 1.6 CCIR601 Horizontal Timing

SEL[2	:0] = 100 ~ 111, NTSC		
	EVEN Field	ODD Field	
VSYNC			
HSYNC			261 262 263
RR[7:0]	◄t _{VBP} = VBP[6:0]	DL1 DL2 DL3	DL239DL240
	'		
	ODD Field	EVEN Field	
VSYNC			
HSYNC		<u> 285 286 287 288</u>	524 525
RR[7:0]	←t _{VBP} = VBP[6:0] + 1-	→ DL1 DL2 DL3	DL239DL240
SELP	:0] = 100 ~ 111, PAL, PALM=0	1	
VSYNC	-EVEN	ODD Field	
VSTINC			
HSYNC			305 306 307
RR[7:0]	t _{VBP} = VBP[6:0]	→ DL1 DL2 DL3	DL279DL280
	ODD	EVEN Field	
VSYNC	_ L		
HSYNC	<u>313 314 315 316 317 318 319</u>	<u>339 340 341 342</u>	618 619 620
RR[7:0]	t _{VBP} = VBP[6:0] + 1	DL1 DL2 DL3	DL279DL280
SEL[2	0] = 100 ~ 111, PAL, PALM=1		
	-EVEN	ODD Field	
VSYNC			
HSYNC			309 310 311
RR[7:0]	-t _{/BP} = VBP[6:0]	→ DL1 DL2 DL3	DL287DL288
			0128701288
	ODD	EVEN Field	
VSYNC	Field		
HSYNC	<u>313 314 315 316 317 318 319</u>	<u>335 336 337 338</u>	622 623 624
RR[7:0]		DL1 DL2 DL3	DL287DL288

Figure 1.7 CCIR601 Vertical Timing

SEL[20] =010, NTSC/PAL
RR[7:0] X FF X 00 X EAV X Invalid Data X FF X 00 X 00 X SAV X Cb1 X Y1 X Cr1 X Y2
←H _{uds} =1560
SEL[20] =011, NTSC
RR[7:0]
حــــــــــــــــــــــــــــــــــــ
→
SEU[20] =011, PAL
RR[7:0]
←tup==HBP[6:0]*4+STF[1:0]>
← + + + + + + + + + + + + + + + + + + +


Figure1. 8 CCIR656 Horizontal Timing

SEL[2:0]=010, 011, NTSC (F=0 è ODD field, F=1 è EVEN field)		
н			
v	523 524 525 1 2 3 4 5	19 20 21 22 23	24 25 26
F		_	
RR[7:0]	type = VBP[6:0] type = VBP[6:0] type = VBP[6:0] type = typ	DL1	DL2[DL3]DL4
н	1 1 1 1 [261]262]263]264 [265 [266 [267 [268]]		
v			
F	t _{VBP} = VBP[6:0]	•	
RR[7:0]	DL239 DL240	DL 1	DL2DL3DL4]
· ·] =010,011, PAL, PALM=0 (F=0 è ODD field, F=1 è EVEN field)		
н			
v			
F			
RR[7:0]	DL278 DL280	t _{VBP} = VBP[6:0]	►DL1DL2DL3DL4
н			
v			
F			
RR[7:0]	<u>b1279 b1280</u>		►DL1DL2DL3
] =010, 011, PAL, PALM=1 (F=0 è ODD field, F=1 è EVEN field)		
н			
v	618 619 620 621 622 623 624 625 1 2 3		21 22 23 24 25 26 27 28 29 30
F			
RR[7:0]	tvBP = المحمد المحم	VBP[6:0]	► DL1 DL2 DL3 DL4 DL5 DL6 DL7 DL8
н	<u>305 [306 [307]308 [309]310 [311 [312 [313]314 [315</u>]		1333 334 335 336 337 338 339 340 341 342
v			
F			
RR[7:0]	↓VBP = b1283 b1284 b1285 b1286 b1287 b1288	VBP[6:0] + 1	DL1 DL2 DL3 DL4 DL5 DL6 DL7

Figure1. 9 CCIR656 Vertical Timing

Characteristics	Symbol	Min.	Тур.	Max.	Unit
VDDD / VDDIO on to falling edge of SHUT	tp-shut	1	-	-	us
DOTCLK	tclk-shut	1	-	-	clk
Falling edge of SHUT to display start		_	-	14	frame
- 1 line: 408 clk - 1 frame: 262 line -DOTCLK = 6.5MHz	tshut-on	-	166	232.4	ms

Note: It is necessary to input DOTCLK before the falling edge of SHUT.

Display starts at 10th falling edge of VSTNC after the falling edge of SHUT.

Table1.3 Power Up Sequence

- V _{DDIO}							
VCI							
RESB							
SPI		X:	SPI accessing	X			
SHUT							
DOTCLK							
HSYNC							
VSYNC		lst	_2nd	3rd	_4th	5th	
VCIX2							Floating
VLCD63							Floating
VCIM							Floating
VGH							Floating
VGL							VGL discharge to ground
Gate/POI	./PWM (If PWM turn-	on)					
SOUT	Normal Display	Bla	ck Pattern(for norm	nally Black), or V	White Pattern(for	normally White)	
(\$0~\$959)	-		Tshut-o	off		*

Figure 1. 11 Power Down Sequence

Characteristics	Symbol	Min.	Тур.	Max.	Unit
Rising edge of SHUT to display off		2	-	-	frame
- 1 line: 408 clk	tshut-off				
- 1 frame: 262 line	ishue on	33.4	-	-	ms
- DOTCLK = 6.5MHz					

Note: DOTCLK must be maintained at lease 2 frames after the rising edge of SHUT.

Display become off at the 2nd falling edge of VSTNC after the falling edge of SHUT.

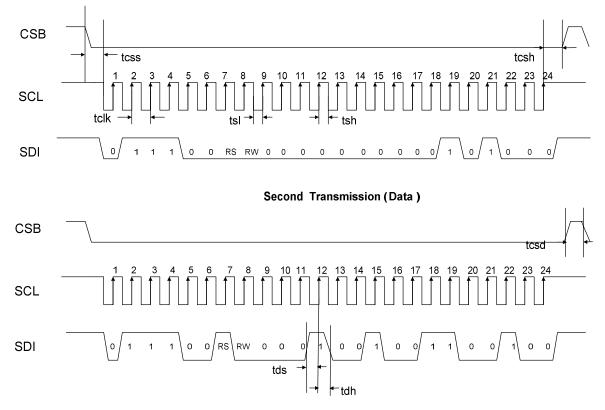

If RESET signal is necessary for power down, provide it after the 2-frames-cycle of the SHUT period.

Table1. 4 Power Down Sequence

• Write SPI

Note: The example writes "0x1264h" to register R28h. SPID connected to VSS.

Figure1.12 (a) SPI interface Timing Diagram & Write SPI Example

RELIABILITY TEST

No.	Test Item	Test Condition	Inspection after test
1	High Temperature Storage	$70\pm2^{\circ}C/12$ hours	1. Functional test is OK.
2	Low Temperature Storage	-20 ± 2 °C/12hours	Missing Segment, short,
3	High Temperature Operating	60 ± 2 °C/12hours	unclear segment, non-
4	Low Temperature Operating	-10 ± 2 °C/12hours	display, display abnormally and liquid crystal leak are
5	Temperature Cycle	-20±2℃~25~70±2℃×10cycles (30min.) (5min.) (30min.)	un-allowed. 2. No low temperature
6	Damp Proof Test	$40^{\circ}\text{C} \pm 5^{\circ}\text{C} \times 90\%$ RH/12hours	bubbles, end seal loose and fall, frame rainbow.
7	Vibration Test	Frequency: 10Hz~55Hz Amplitude: 1.0mm, Each direction on X,Y axe 0.5 houre, circle 2 hours	 Function test is OK. No glass crack, chipped glass, end seal loose and fall, epoxy frame crack
8	Dropping test	Drop to the ground from 80cm height, one time, every side of carton.	3. No structure loose and fall.

■ INSPECTION CRITERION

OUTGOING QUALITY STANDARD	PAGE 1 OF 5
TITLE:FUNCTIONAL TEST & INSPECTION CRITERIA	
This specification is made to be used as the standard accuration phone LCM. 1 Sample plan	eptance/rejection criteria for Color mobile
1.1 Lot size: Quantity per shipment lot per model	
1.2 Sampling type: Normal inspection, Single sampling	
1.3 Inspection level: II	
1.4 Sampling table: MIL-STD-105D	
1.5 Acceptable quality level (AQL)	
Majot defect: AQL=0.65	
Minor defect: AQL=1.00	
2. Inspection condition	
2.1 Ambient conditions:	
a. Temperature: Room temperature $25\pm5^{\circ}$ C	
b. Humidity: (60±10) %RH	
c. Illumination: Single fluoresænt lamp non-directive	e (300 to 700 Lux)
2.2 Viewing distance:	
The distance between the LCD and the inspector's ey	yes shall be at least $35\pm$ 5cm.
2.3 Viewing Angle U/D: 45° /45°, L/R: 45° /45°	
0/D. +3 /+3 , L/K. +3 /+3	
45° 45° 35cm	Eve position ~40cm LCD Panel

TITLE: FUNCTIONAL TEST & INSPECTION CRITERIA

3. Inspection standards

Defects are classified as majot defects and minor defects according to the degree of defectiveness defined herein.

3.1 Major defect

Iter	m No	Items to be inspected	Inspection Standard
3	3.1.1	All functional defects	 No display Display abnormally Short circuit line defect
3	3.1.2	Missing	Missing function component
3	3.1.3	Crack	Glass crack

3.2 Minor defect

Item No	Items to be inspected	Inspection standard	
	Spot Defect Including	For dark/white spot is defined $\varphi = (\mathbf{x} + \mathbf{y}) / 2$ $\longrightarrow \mathbf{x} + \mathbf{y} / \mathbf{x}$ \mathbf{y}	
	Black spot	Size $\phi(mm)$	Acceptable Quantity
3.2.1	White spot Pinhole Foreign particle Polarizer dirt	φ ≤0.10	Ignore
		0.10 < φ≤ 0.20	3
		0.20<φ	Not allowed

MIF	OUTGOIN	G QUALITY STANDARD	PAGE 3 OF 5
LE:FUN	CTIONAL TEST & II	NSPECTION CRITERIA	
	Line Defect Including Black line White line Scratch	Define:	Width
3.2.2		Width(mm) Length(mm)	Acceptable Quantity
		W≤0.02	Ignore
		0.02 < W≤0.05 L≤3.0	2
		0.05 < W	Not allowed
		Size $\phi(mm)$	Acceptable Quantity
	Polarizer Dent/Bubble	φ≤0.2	Ignore
		0.2<φ≤0.3	2
3.2.3		0.3<φ≤0.5	1
		0.5< φ	Not allowed
		Total QTY	3
	Electrical Dot Defect	Bright and Black dot def	ine:
3.2.4		Inspection pattern: Full white, Full black, Red, green and blue screens	
		Item	Acceptable Quantity
		Black dot defect	2
		Bright dot defect	0
		Total Dot	2

	OUTGOIN	IG QUALITY STANDARD	PAGE 4 OF 5	
TITLE:FUNCTIONAL TEST & INSPECTION CRITERIA				
	Touch panel defect	1.Corner Fragment:	X Z Z	
		Size(mm)	AcceptableQuantity	
3.2.5		X≤3mm Y≤3mm Z≤T	Ignore T: Glass thickness X: Length Y: Width Z: thickness	
		2. Side Fragment:	Y Z	
		Size(mm)	Acceptable Quantity	
		X≤5.0mm Y ≤3mm Z≤T	Ignore T: Glass thickness X: Length Y: Width Z: thickness	
	Touch panel spot	Size $\varphi(mm)$	Acceptable Quantity	
3.2.6		φ≤0.15	Ignore	
		0.15 <φ≤0.25	3	
		0.25 < φ	0	

OUTGOING QUALITY STANDARD			PAGE 5 OF 5		
TITLE:FUN	TITLE:FUNCTIONAL TEST & INSPECTION CRITERIA				
	3.2.7 Touch panel White line Scratch	Width(mm) Length(mm)	Acceptable Quantity		
3.2.7		W≤0.03	Ignore		
		0.03 < W≤0.05 L≤5.0	3		
		0.05 < W or L>5	Not allowed		
3.2.8	Touch panel Newton ring	Compare with limit sample			

Note: 1. Dot defect is defined as the defective area of the dot area is larger than 50% of the dot area .

- 2. The distance between two bright dot defects (red, green, blue, and white) should be larger than 15mm;
- 3. The distance between black dot defects or black and bright dot defects should be more than 5mm apart.
- 4. Polarizer bubble is defined as the bubble appears on active display area. The defect of polarizer bubble shall be ignored if the polarizer bubble appears on the outside of active display area.

■ PRECAUTIONS FOR USING LCD MODULES

Handing Precautions

(1) The display panel is made of glass and polarizer. As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring. Do not subject it to a mechanical shock by dropping it or impact.

(2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.

(3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary. Do not touch the display with bare hands. This will stain the display area and degraded insulation between terminals (some cosmetics are determined to the polarizer).

(4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). Do not put or attach anything on the display area to avoid leaving marks on. Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizer. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.

(5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents

- Isopropyl alcohol

- Ethyl alcohol

Do not scrub hard to avoid damaging the display surface.

(6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.

- Water

- Ketone

- Aromatic solvents

Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading. Avoid contacting oil and fats.

(7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.

(8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.

(9) Do not attempt to disassemble or process the LCD module.

(10) NC terminal should be open. Do not connect anything.

(11) If the logic circuit power is off, do not apply the input signals.

(12) Electro-Static Discharge Control, Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

- Before remove LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential. Be sure to ground the body when handling the LCD modules.

- Tools required for assembling, such as soldering irons, must be properly grounded. make certain the AC power source for the soldering iron does not leak. When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.

- To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions. To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended. As far as possible make the electric potential of your work clothes and that of the work bench the ground potential

- The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated

(13) Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.

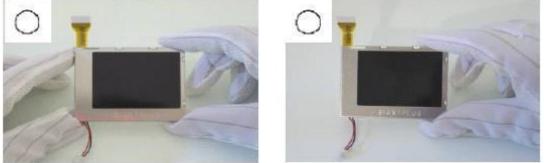
- Do not alter, modify or change the shape of the tab on the metal frame.

- Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.

- Do not damage or modify the pattern writing on the printed circuit board.

- Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.

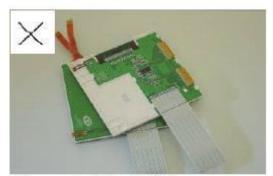
- Except for soldering the interface, do not make any alterations or modifications with a soldering iron.


- Do not drop, bend or twist LCM.

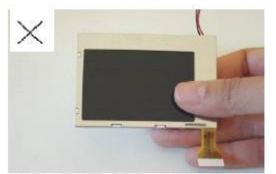
Handling precaution for LCM

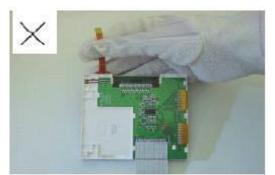
LCM is easy to be damaged. Please note below and be careful for handling!

Correct handling:



As above picture, please handle with anti-static gloves around LCM edges.


Incorrect handling:


Please don't touch IC directly.

Please don't stack LCM.

Please don't hold the surface of panel.

Please don't stretch interface of output, such as FPC cable.

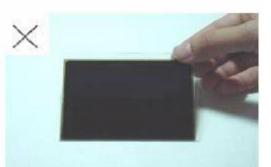
Handling precaution for LCD

LCD is easy to be damaged. Please note below and be careful for handling!

Correct handling:

As above photo, please handle with anti-static gloves around LCD edges.

Incorrect handling:


Please don't stack the LCDS.

Please don't operate with sharp stick such as pens.

Please don't hold the surface of LCD.

Please don't touch ITO glass without anti-static gloves.

Storage Precautions

When storing the LCD modules, the following precaution is necessary.

(1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for the dessicant.

(2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C, and keep the relative humidity between 40%RH and 60%RH.

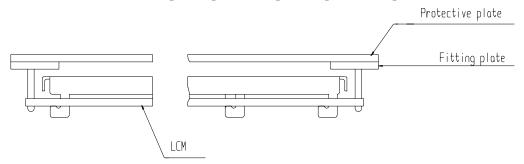
(3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the anti-static electricity container in which they were shipped. Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

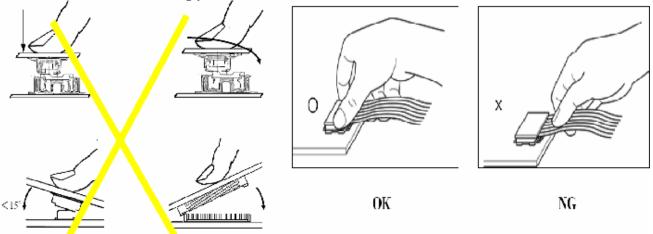
- Exposed area of the printed circuit board.

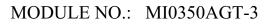

-Terminal electrode sections.

USING LCD MODULES

Installing LCD Modules

The hole in the printed circuit board is used to fix LCM as shown in the picture below. Attend to the following items when installing the LCM.


(1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.



(2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be ± 0.1 mm.

Precaution for assemble the module with BTB connector:

Please note the position of the male and female connector position, don't assemble or assemble like the method which the following picture shows

Precaution for soldering to the LCM

	Hand soldering	Machine drag soldering	Machine press soldering
No ROHS product	290°C ~350°C.	330°C ~350°C.	300°C ~330°C.
	Time : 3-5S.	Speed : 4-8 mm/s.	Time : 3-6S.
product			Press: 0.8~1.2Mpa
ROHS product	340°C ∼370°C.	350°C ~370°C.	330°C ~360°C.
	Time : 3-5S.	Time : 4-8 mm/s.	Time : 3-6S.
			Press: 0.8~1.2Mpa

(1) If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage due to flux spatters.

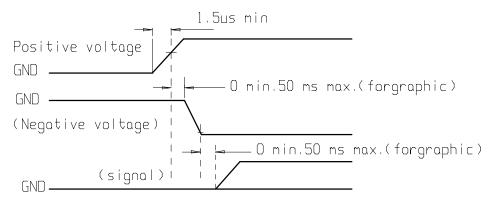
(2) When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.

(3) When remove the electroluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.

Precautions for Operation

(1) Viewing angle varies with the change of liquid crystal driving voltage (VLCD). Adjust VLCD to show the best contrast.

(2) It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life. An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.


(3) Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, Which will come back in the specified operating temperature.

(4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.

(5) A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit. Usage under the maximum operating temperature,50%RH or less is required.

(6) Input each signal after the positive/negative voltage becomes stable.

(7) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.

Safety

(1) It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.

(2) If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

Limited Warranty

Unless agreed betweenMulti-Inno and customer,Multi-Inno will replace or repair any of its LCD modules which are found to be functionally defective when inspected in accordance with Multi-Inno LCD acceptance standards (copies available upon request) for a period of one year from date of production. Cosmetic/visual defects must be returned to Multi-Inno within 90 days of shipment. Confirmation of such date shall be based on data code on product. The warranty liability ofMulti-Inno limited to repair and/or replacement on the terms set forth above. Multi-Inno will not be responsible for any subsequent or consequential events.

Return LCM under warranty

No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are :

- Broken LCD glass.
- PCB eyelet is damaged or modified.
- PCB conductors damaged.
- Circuit modified in any way, including addition of components.
- PCB tampered with by grinding, engraving or painting varnish.
- Soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet, conductors and terminals.

PRIOR CONSULT MATTER

- 1. TFor Multi-Inno standard products, we keep the right to change material, process ... for improving the product property without notice on our customer.
- ⁽²⁾For OEM products, if any change needed which may affect the product property, we will consult with our customer in advance.
- 2. If you have special requirement about reliability condition, please let us know before you start the test on our samples.